We use cookies to ensure you have the best browsing experience on our website. Please read our cookie policy for more information about how we use cookies.

Good explanation. Another way to think about it that helps me (though if it doesn't help you, probably best just to forget about it) is to consider the result if I graphed the function. So if the x axis is x, and the y axis is f(x), then for a valid function, there should be no place along the x axis where I could draw a vertical line directly down or up and have that line intersect the function's curve/line in more than one place.

Using the examples given above, if you graphed the valid function outputs, you would see that there is only one output for each x input (i.e. only one spot on the graph for each x), and thus I cannot draw a vertical line intercepting the function in more than one place. That is NOT the case however with the invalid input, as I could draw a line and intercept the function's output for 2 at two places.

I hope this helps to clarify things for someone :)

## Functions or Not?

You are viewing a single comment's thread. Return to all comments →

Good explanation. Another way to think about it that helps me (though if it doesn't help you, probably best just to forget about it) is to consider the result if I graphed the function. So if the x axis is x, and the y axis is f(x), then for a valid function, there should be no place along the x axis where I could draw a vertical line directly down or up and have that line intersect the function's curve/line in more than one place.

Using the examples given above, if you graphed the valid function outputs, you would see that there is only one output for each x input (i.e. only one spot on the graph for each x), and thus I cannot draw a vertical line intercepting the function in more than one place. That is NOT the case however with the invalid input, as I could draw a line and intercept the function's output for 2 at two places.

I hope this helps to clarify things for someone :)