Jenny's Subtrees

HackerRank

Jenny loves experimenting with trees. Her favorite tree has n nodes connected by n - 1 edges, and each edge is 1 unit in length. She wants to cut a *subtree* (i.e., a connected part of the original tree) of radius r from this tree by performing the following two steps:

- 1. Choose a node, \boldsymbol{x} , from the tree.
- 2. Cut a subtree consisting of *all* nodes which are *not further* than r units from node x.

For example, the blue nodes in the diagram below depict a subtree centered at x=1 that has radius r=2:

Given n, r, and the definition of Jenny's tree, find and print the number of *different* subtrees she can cut out. Two subtrees are considered to be different if they are not isomorphic.

Input Format

The first line contains two space-separated integers denoting the respective values of n and r. Each of the next n - 1 subsequent lines contains two space-separated integers, x and y, describing a bidirectional edge in Jenny's tree having length 1.

Constraints

- $1 \le n \le 3000$
- $0 \le r \le 3000$
- $1 \leq x, y \leq n$

Subtasks

For 50% of the max score:

- $1 \le n \le 500$
- $0 \le r \le 500$

Output Format

Print the total number of different possible subtrees.

Sample Input 0

7	1	
1	2	
1	3	
1	4	
1	5	
2	6	
2	7	

Sample Output 0

3

Explanation 0

In the diagram below, blue nodes denote the possible subtrees:

The last ${f 5}$ subtrees are considered to be the same (i.e., they all consist of two nodes connected by one edge), so we print ${f 3}$ as our answer.

Sample Input 1

7	3	
1	2	
2	3	
3	4	
4	5	
_	-	

- 5 6
- 6 7

```
Sample Output 1
```

4

Explanation 1

In the diagram below, blue nodes denote the possible subtrees:

Here, we have four possible different subtrees.