Consider an array of integers, $A=\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]$. Let $\max (b, e)$ and $\min (b, e)$ be the respective maximum and minimum values in the inclusive range between index b and e.

Given A, perform q queries where each query consists of two integers, low and high. For each query, find and print the number of (b, e) pairs that satisfy the following:

- $0 \leq b \leq e<n$
- low $\leq \max (b, e)-\min (b, e) \leq h i g h$.

Input Format

The first line contains two space-separated integers describing the respective values of n (the size of array A) and q (the number of queries).
The second line contains n space-separated integers describing the respective values of $a_{0}, a_{1}, \ldots, a_{n-1}$. Each line j of the q subsequent lines contains two space-separated integers describing the respective values of $l o w_{j}$ and $h i g h_{j}$ for the $j^{\text {th }}$ query.

Constraints

- $1 \leq n \leq 5 \times 10^{5}$
- $n \times q \leq 2 \times 10^{6}$
- $1 \leq a_{i} \leq 10^{9}$
- $1 \leq$ low $_{j} \leq h i g h_{j} \leq 10^{9}$ for $0 \leq j<q$

Output Format

Print q lines where each line j is the number of possible pairs for the $j^{\text {th }}$ query.

Sample Input 0

```
3
2 1 4
1
2
2 3
```


Sample Output 0

The diagram below breaks down the possible pairs for each query on $A=[1,2,1,4]$:

Array A

0	1	2	3
1	2	1	4

b	e	max (b, e)	$\min (\mathrm{b}, \mathrm{e})$	$\begin{gathered} \hline \max (\mathrm{b}, \mathrm{e})- \\ \min (\mathrm{b}, \mathrm{e}) \\ \hline \end{gathered}$
0	0	1	1	0
0	1	2	1	1
0	2	2	1	1
0	3	4	1	3
1	1	2	2	0
1	2	2	1	1
1	3	4	1	3
2	2	1	1	0
2	3	4	1	3
3	3	4	4	0

As you can see, the first query has 3 pairs, the second has 0 pairs, and the third has 3 pairs.

