Maximal Tree Diameter

Consider an unrooted tree with n vertices numbered from 1 to n connected by $n-1$ edges of length 1 . We define the diameter of a tree as the longest path between any two vertices of the tree.

We can modify the tree to maximize its diameter by performing the following moves exactly once:

- Remove one edge from the tree so that it splits into two smaller trees.
- Pick one vertex from each of the two trees and join them by adding an edge.

For example, the diameter of the initial tree in the diagram below is 2 , but we can increase this to 3 by removing the edge between vertices 2 and 4 and adding an edge connecting vertices 1 and 4 :

Given a tree, print the maximum possible diameter after modifying the tree.

Input Format

The first line contains an integer denoting n (the number of vertices).
Each of the $n-1$ subsequent lines contains two space-separated integers, u and v, defining an edge connecting vertex u and vertex v.

Constraints

- $2 \leq n \leq 5 \cdot 10^{5}$

Subtasks

- $2 \leq n \leq 3000$ for 30% of the maximum score.

Output Format

Print the maximum possible diameter after modifying the tree.

Sample Input 0

\square

Sample Output 0

Explanation 0

The optimal solution for this tree is diagrammed in the Problem Statement above.

