Tree Isomorphism

Little Alexey was playing with trees while studying two new awesome concepts: subtree and isomorphism.

A tree is a connected, undirected graph with no cycles. We can denote a tree by a pair (V, E), where V is the set of vertices and E is the set of edges. Here's an example of a tree:

Let V^{\prime} be a subset of V, and let E^{\prime} be the set of edges between the vertices in V^{\prime}. If the graph $\left(V^{\prime}, E^{\prime}\right)$ is is a tree, then it is called a subtree of G. Here's an example of a subtree of the tree above:

Two trees are said to be isomorphic if they contain the same number of vertices and those vertices are connected in the same way. For example, the following two trees are isomorphic:

More formally, two trees $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are said to be isomorphic if there exists a one-to-one correspondence $f: V_{1} \rightarrow V_{2}$ such that $(u, v) \in E_{1}$ if and only if $(f(u), f(v)) \in E_{2}$.

Now he wonders, how many non-isomorphic trees can he construct using such a procedure? He asks you for help!

Input Format

The first line contains a single integer n denoting the number of vertices of the tree. The number of edges is $n-1$. The vertices are numbered 1 to n.

The next $n-1$ lines describe the edges of the tree. The $i^{\text {th }}$ such line contains two space-separated integers a_{i} and b_{i} denoting the vertices that the $i^{\text {th }}$ edge connects.

Constraints

- $1 \leq n \leq 19$
- $1 \leq a_{i}, b_{i} \leq n$
- It's guaranteed that the given graph forms a tree.

Output Format

Print a single line containing a single integer denoting the number different non-isomorphic trees that Little Alexey can obtain.

Sample Input 0

```
3
1 2
13
```


Sample Output 0

3

Explanation 0

Here are the three trees that Little Alexey can obtain from the tree in this sample:

- a single vertex,
- Two vertices with edge between them, and
- the whole tree.

The following image illustrates it:

