Candy Collection

Halloween is here! Mancunian runs a candy shop and his friend Liverbird is here to buy candies to give to the children. There are n boxes of candies in a line. The $i^{\text {th }}$ box contains V_{i} candies, and the $i^{\text {th }}$ box has color T_{i}. Liverbird wants to buy all the boxes! But the problem is that he does not have a lot of money. :(

Liverbird will carry all the boxes home using crates. A crate will contain a contiguous sequence of candy boxes. (Note: Don't confuse boxes with crates; crates will contain boxes and boxes contain candies.) Each box belongs to exactly one crate. Liverbird is also choosy about the boxes in a single crate. He does not want any two boxes in the same crate to have the same color. The cost of a crate is the bitwise OR of the number of candies in the boxes it contains (don't ask Mancunian why). For example, the cost of a crate containing three boxes, containing 1, 2 and 3 candies respectively, is 1 OR 2 OR $3=3$.

What is the minimum total cost needed to buy all the boxes?

Input Format

The first line of input contains n, the number of candy boxes.
The second line contains n space-separated integers, the $i^{\text {th }}$ of which represents T_{i}, the color of the $i^{\text {th }}$ box. Colors are represented as positive integers.
The third line contains n space-separated integers, the $i^{\text {th }}$ of which represents the number of candies V_{i} in the $i^{\text {th }}$ box.

Constraints

- $1 \leq n \leq 500000$
- $1 \leq T_{i} \leq 10^{6}$
- $0 \leq V_{i} \leq 10^{6}$

Subtask

- For 30% of the maximum points, $1 \leq n \leq 5000$

Output Format

Print a single integer which is the answer to the given problem.

Sample Input 0

```
6
5}2211344
1000 0 100012 3
```


Sample Output 0

```
1 0 0 3
```


Explanation 0

Liverbird will use two crates.
The first green crate contains the first three boxes and has cost 1000 OR 0 OR $1000=1000$. The second blue crate contains the last three boxes and has cost 1 OR 2 OR $3=3$.

Sample Input 1

```
5
1 2 3 4 1
999922
```


Sample Output 1

11

Explanation 1

Liverbird will use two crates.
The first green crate contains the first, second and third boxes and has cost 9 OR 9 OR $9=9$. The second blue crate contains the fourth and the fifth boxes and has cost 2 OR $2=2$.

9	9	9	2	2

