Given an array, we define its value to be the value obtained by following these instructions:

- Write down all pairs of numbers from this array.
- Compute the product of each pair.
- Find the sum of all the products.

For example, for a given array, for a given array $[7,2,-1,2]$,
Pairs $\quad(7,2),(7,-1),(7,2),(2,-1),(2,2),(-1,2)$
Products of the pairs14, $-7,14,-2,4,-2$
Sum of the products $14+(-7)+14+(-2)+4+(-2)=21$
Note that $(7,2)$ is listed twice, one for each occurrence of 2 .
Given an array of integers, find the largest value of any of its nonempty subarrays.
Note: A subarray is a contiguous subsequence of the array.
Complete the function largestValue which takes an array and returns an integer denoting the largest value of any of the array's nonempty subarrays.

Input Format

The first line contains a single integer n, denoting the number of integers in array A. The second line contains n space-separated integers A_{i} denoting the elements of array A.

Constraints

- $3 \leq n \leq 5 \cdot 10^{5}$
- $-10^{3} \leq A_{i} \leq 10^{3}$

Subtasks

- $n \leq 5000$ for 20% of the points.
- $n \leq 2 \cdot 10^{5}$ for 70% of the points.

Output Format

Print a single line containing a single integer denoting the largest value of any of the array's nonempty subarrays.

Sample Input 0

$\begin{array}{llllll}-3 & 7 & -2 & 3 & 5 & -2\end{array}$

Sample Output 0

Explanation 0

In this case, we have $A=[-3,7,-2,3,5,-2]$. The largest-valued subarray turns out to be $[7,-2,3,5]$ with value $(7 \cdot-2)+(7 \cdot 3)+(7 \cdot 5)+(-2 \cdot 3)+(-2 \cdot 5)+(3 \cdot 5)=41$.

Sample Input 1

```
1 0
```

$\begin{array}{llllllllll}5 & 7 & -5 & 6 & 3 & 9 & -8 & 2 & -1 & 10\end{array}$

Sample Output 1

200

