Array Partition

Given an array A consisting of N positive integers, split the array A into 2 non empty subsets P and Q such that an element from array A either belongs to subset P or to subset Q and $\operatorname{gcd}\left(\prod P_{i}, \prod Q_{i}\right)=1$. Calculate the number of ways of splitting the array A into 2 subsets P and Q.

Since the answer can be quite large, print it modulo $10^{9}+7$.

Input Format

First line of input contains a single integer T denoting number of test cases.
First line of each test case contains a single integer N denoting size of array A.
Second line of each test case contains N space separated integer denoting elements of array A.

Constraints

- $1 \leq T \leq 5$
- $1 \leq N \leq 10^{5}$
- $1 \leq A_{i} \leq 10^{6}$

Scoring

- $1 \leq N \leq 15,1 \leq A_{i} \leq 15$ for 20% test data.
- $1 \leq N \leq 1000,1 \leq A_{i} \leq 10^{6}$ for 50% test data.
- $1 \leq N \leq 10^{5}, 1 \leq A_{i} \leq 10^{6}$ for 100% test data.

Output Format

Output consists of T lines, where $i^{\text {th }}$ lines contains required answer for $i^{\text {th }}$ test cases.

Sample Input 0

```
3
3
    3 1
3
2 36
2361
```


Sample Output 0

```
6
0
2
```


Explanation 0

- For $1^{\text {st }}$ test case, following paritions are possible
- $\{1\},\{2,3\}=\operatorname{gcd}(1,6)=1$
- $\{1,2\},\{3\}=\operatorname{gcd}(2,3)=1$
- $\{1,3\},\{2\}=\operatorname{gcd}(3,2)=1$
- $\{2,3\},\{1\}=\operatorname{gcd}(6,1)=1$
- $\{3\},\{1,2\}=\operatorname{gcd}(3,2)=1$
- $\{2\},\{1,3\}=\operatorname{gcd}(2,3)=1$
- For $2^{n d}$ test case, any partition will not result $\operatorname{gcd}=1$.

