Customized Chess Board

Since all chess boards available in the market are 8×8 boards, Alex decides to paint a customised $N \times N$ board. Given the painted chess board, can you tell if it is painted correctly or not ? A chess board is considered valid if every 2 adjacent cells are painted with different color. Two cells are considered adjacent if they share a boundary e.g.

Figure I

Figure II

Chess board in figure I is painted correctly though chess board in figure II is not.

Input Format

First line of input contains a single integer T denoting the number of test cases.
First line of each test contains a single integer N denoting the size of the board.
Next N lines of each test case contains N space separated integers. If the $j^{\text {th }}$ integer in $i^{\text {th }}$ line is 0 , it means that cell is painted in black color otherwise it is painted in white color and is represented with 1.

Constraints

- $1 \leq T \leq 5$
- $1 \leq N \leq 100$
- $C_{i, j} \in 0,1$

Output Format

For each test case, Print Yes if the chess board is painted correctly, Print No otherwise in a new line.

Sample Input 0

```
2
2
0
0
2
O
1 0
```


Sample Output 0

[^0]- In the first test case, adjacent cells are painted with same color making painted configuration invalid.
- In the second test case, every pair of adjacent cells is painted with different color making chess board configuration valid.

[^0]: No
 Yes

