Nikita has a line of N tiles indexed from 0 to $N-1$. She wants to paint them to match a color configuration, C, which is comprised of 2 colors: $\operatorname{Red}(\mathrm{R})$ and Blue(B).

In one stroke, Nikita can paint 1 or more adjacent tiles a single color. After she finishes painting, each tile i should be painted color C_{i}.

It should be noted that it is not allowed to apply more than 1 stroke on a tile.
Given the required color configuration, find and print the minimum number of strokes required for Nikita to paint all N tiles.

Note: In a line of tiles, 2 tiles with the indices i and j are considered adjacent only if $|j-i|=1$.

Input Format

The first line contains a single integer, N, denoting the number of tiles to be painted.
The second line contains a string, C, denoting the desired color configuration.
For each character C_{i} in C :

- If $C_{i}=$ " R ", it means the $i^{\text {th }}$ tile must be painted red.
- If $C_{i}=$ "B", it means the $i^{\text {th }}$ tile must be painted blue.

Constraints

- $1 \leq N \leq 1000$
- $C_{i} \in\{" \mathrm{R} ", " \mathrm{~B} "\}$

Output Format

Print the minimum number of strokes required to paint all N tiles in the desired color configuration.

Sample Input 0

5
RRRRR

Sample Output 0

1

Sample Input 1

3

Sample Input 2

```
5
BRBRB
```


Sample Output 2

5

Explanation

Sample Case 0:
Nikita will paint all 5 consecutive tiles red in a single stroke:

Sample Case 1:
Nikita will need 3 strokes to paint all 5 tiles:

Tiles: After 3 Strokes (Final State)

