Paint The Tiles

HackerRank

Nikita has a line of N tiles indexed from 0 to N - 1. She wants to paint them to match a color configuration, C, which is comprised of 2 colors: Red(R) and Blue(B).

In one stroke, Nikita can paint 1 or more adjacent tiles a single color. After she finishes painting, each tile i should be painted color C_i .

It should be noted that it is not allowed to apply more than $1 \mbox{ stroke on a tile.}$

Given the required color configuration, find and print the *minimum* number of strokes required for Nikita to paint all N tiles.

Note: In a line of tiles, 2 tiles with the indices i and j are considered adjacent only if |j - i| = 1.

Input Format

The first line contains a single integer, N, denoting the number of tiles to be painted. The second line contains a string, C, denoting the desired color configuration.

For each character C_i in C:

- If $C_i = "\mathbf{R}"$, it means the i^{th} tile must be painted *red*.
- If $C_i = "B"$, it means the i^{th} tile must be painted *blue*.

Constraints

- $1 \le N \le 1000$
- $C_i \in \{"R", "B"\}$

Output Format

Print the minimum number of strokes required to paint all N tiles in the desired color configuration.

Sample Input 0

5 RRRRR

Sample Output 0

1

Sample Input 1

5 RRBRR

Sample Output 1

3

Sample Input 2

5 BRBRB

Sample Output 2

5

Explanation

Sample Case 0:

Nikita will paint all ${\bf 5}$ consecutive tiles red in a single stroke:

Sample Case 1:

Nikita will need ${\bf 3}$ strokes to paint all ${\bf 5}$ tiles:

