Find the Path

You are given a table, a, with n rows and m columns. The top-left corner of the table has coordinates (0,0), and the bottom-right corner has coordinates (n-1,m-1). The i^{th} cell contains integer $a_{i,j}$.

A path in the table is a sequence of cells $(r_1,c_1),(r_2,c_2),\ldots,(r_k,c_k)$ such that for each $i\in\{1,\ldots,k-1\}$, cell (r_i,c_i) and cell (r_{i+1},c_{i+1}) share a side.

The weight of the path $(r_1,c_1),(r_2,c_2),\ldots,(r_k,c_k)$ is defined by $\sum_{i=1}^k a_{r_i,c_i}$ where a_{r_i,c_i} is the weight of the cell (r_i,c_i) .

You must answer q queries. In each query, you are given the coordinates of two cells, (r_1, c_1) and (r_2, c_2) . You must find and print the minimum possible weight of a path connecting them.

Note: A cell can share sides with at most 4 other cells. A cell with coordinates (r,c) shares sides with (r-1,c), (r+1,c), (r,c-1) and (r,c+1).

Input Format

The first line contains 2 space-separated integers, n (the number of rows in a) and m (the number of columns in a), respectively.

Each of n subsequent lines contains m space-separated integers. The j^{th} integer in the i^{th} line denotes the value of $a_{i,j}$.

The next line contains a single integer, q, denoting the number of queries.

Each of the q subsequent lines describes a query in the form of 4 space-separated integers: r_1 , c_1 , r_2 , and c_2 , respectively.

Constraints

- 1 < n < 7
- $1 \le m \le 5 \times 10^3$
- $0 \le a_{i,j} \le 3 \times 10^3$
- $1 \le q \le 3 \times 10^4$

For each query:

- $0 \le r_1, r_2 < n$
- $0 \le c_1, c_2 < m$

Output Format

On a new line for each query, print a single integer denoting the minimum possible weight of a path between (r_1,c_1) and (r_2,c_2) .

Sample Input

```
3 5
0 0 0 0 0
1 9 9 9 1
0 0 0 0 0
3
0 0 2 4
0 3 2 3
1 1 3
```

Sample Output

```
1
1
18
```

Explanation

The input table looks like this:

The first two queries are explained below:

1. In the first query, we have to find the minimum possible weight of a path connecting (0,0) and (2,4). Here is one possible path:

(0,0)				
0	0	0	0	0
1	9	9	9	1
0	0	0	0	0
	(2,4)			

The total weight of the path is 0+1+0+0+0+0+0=1.

2. In the second query, we have to find the minimum possible weight of a path connecting (0,3) and (2,3). Here is one possible path:

(0,0)	(0,3)				
0	0	0	0	0	
1	9	9	9	1	
0	0	0	0	0	
			(2.3)	(2.4)	

The total weight of the path is 0+0+1+0+0=1.