2's complement

Understanding 2's complement representation is fundamental to learning about Computer Science. It allows us to write negative numbers in binary. The leftmost digit is used as a sign bit. If it is 1 , we have a negative number and it is represented as the two's complement of its absolute value. Let's say you wrote down the 2 's complement representation for each 32 -bit integer in the inclusive range from a to b. How many 1's would you write down in all?

For example, using an 8-bit byte rather than 32 bit integer, the two's complement of a number can be found by reversing all its bits and adding 1. The two's complement representations for a few numbers are shown below:

	INumber \mid		Representation in
Number	Binary	Inverse	Two's Complement
-3	00000011	11111100	11111101
-2	00000010	11111101	11111110
-1	00000001	1111110	1111111
0	00000000		00000000
1	00000001	00000001	
2	00000010		00000010
3	00000011	00000011	

To write down that range of numbers' two's complements in 8 bits, we wrote 261 's. Remember to use 32 bits rather than 8 in your solution. The logic is the same, so the 8 bit representation was chosen to reduce apparent complexity in the example.

Function Description

Complete the twosCompliment function in the editor below. It should return an integer.
twosCompliment has the following parameter(s):

- a : an integer, the range minimum
- b : an integer, the range maximum

Input Format

The first line contains an integer T, the number of test cases.
Each of the next T lines contains two space-separated integers, a and b.

Constraints

- $T \leq 1000$
- $-2^{31} \leq a \leq b \leq 2^{31}-1$

Output Format

For each test case, print the number of 1 's in the 32 -bit 2 's complement representation for integers in the inclusive range from a to b on a new line.

Sample Input 0

```
3
-2 0
-3 4
-14
```


Sample Output 0

```
63
99
3 7
```


Explanation 0

Test case 0
-2 has 31 ones
-1 has 32 ones
0 has 0 ones
$31+32+0=63$
Test case 1
-3 has 31 ones
-2 has 31 ones
-1 has 32 ones
0 has 0 ones
1 has 1 ones
2 has 1 ones
3 has 2 ones
4 has 1 ones
$31+31+32+0+1+1+2+1=99$
Test case 2
-1 has 32 ones
0 has 0 ones
1 has 1 ones
2 has 1 ones
3 has 2 ones
4 has 1 ones
$32+0+1+1+2+1=37$

Sample Input 1

```
4
-5 0
1 7
-6 -3
36
```


Sample Output 1

Explanation 1

```
Test case 0
-5 has 31 ones
-4 has 30 ones
-3 has 31 ones
-2 has 31 ones
-1 has 32 ones
0 has 0 ones
31+30+31+31+32+0 = 155
Test case 1
1 has 1 ones
2 has 1 ones
3 has 2 ones
4 has 1 ones
5 has 2 ones
6 has 2 ones
7 has 3 ones
1+1+2+1+2+2+3 = 12
Test case 2
-6 has 30 ones
-5 has 31 ones
-4 has 30 ones
-3 has 31 ones
30+31+30+31 = 122
Test case 3
3 has 2 ones
4 \text { has 1 ones}
5 has 2 ones
6 has 2 ones
2+1+2+2 = 7
```

