
1/2

Day 17: More

Exceptions

Objective

Yesterday's challenge taught you to manage exceptional situations by using try and catch blocks. In

today's challenge, you will practice throwing and propagating an exception. Check out the Tutorial tab for

learning materials and an instructional video.

Task

Write a Calculator class with a single method: int power(int,int). The power method takes two integers,

and , as parameters and returns the integer result of . If either or is negative, then the method

must throw an exception with the message: n and p should be non-negative .

Note: Do not use an access modifier (e.g.: public) in the declaration for your Calculator class.

Input Format

Input from stdin is handled for you by the locked stub code in your editor. The first line contains an

integer, , the number of test cases. Each of the subsequent lines describes a test case in space-

separated integers that denote and , respectively.

Constraints

No Test Case will result in overflow for correctly written code.

Output Format

Output to stdout is handled for you by the locked stub code in your editor. There are lines of output,

where each line contains the result of as calculated by your Calculator class' power method.

Sample Input

4

3 5

2 4

-1 -2

-1 3

Sample Output

243

16

n and p should be non-negative

n and p should be non-negative

Explanation

: and are positive, so power returns the result of , which is .

https://www.hackerrank.com/challenges/30-more-exceptions/tutorial

2/2

: and are positive, so power returns the result of =, which is .

: Both inputs (and) are negative, so power throws an exception and

 is printed.

: One of the inputs () is negative, so power throws an exception and

is printed.

