Day 25: Running Time and Complexity

HackerRank

Objective

Today we will learn about running time, also known as time complexity. Check out the Tutorial tab for learning materials and an instructional video.

Task

A *prime* is a natural number greater than 1 that has no positive divisors other than 1 and itself. Given a number, n, determine and print whether it is **Prime** or **Not prime**.

Note: If possible, try to come up with a $O(\sqrt{n})$ primality algorithm, or see what sort of optimizations you come up with for an O(n) algorithm. Be sure to check out the *Editorial* after submitting your code.

Input Format

The first line contains an integer, T, the number of test cases. Each of the T subsequent lines contains an integer, n, to be tested for primality.

Constraints

- $1 \leq T \leq 30$
- $1 \leq n \leq 2 imes 10^9$

Output Format

For each test case, print whether *n* is **Prime** or **Not prime** on a new line.

Sample Input

Sample Output

Not prime Prime Prime

Explanation

Test Case 0: n=12.

12 is divisible by numbers other than 1 and itself (i.e.: 2, 3, 4, 6), so we print **Not prime** on a new line.

Test Case 1: n=5. 5 is only divisible 1 and itself, so we print ${\tt Prime}$ on a new line. Test Case 2: n = 7. 7 is only divisible 1 and itself, so we print **Prime** on a new line.