3D Surface Area

HackerRank

Madison is a little girl who is fond of toys. Her friend Mason works in a toy manufacturing factory . Mason has a 2D board A of size $H \times W$ with H rows and W columns. The board is divided into cells of size 1×1 with each cell indicated by its coordinate (i, j). The cell (i, j) has an integer A_{ij} written on it. To create the toy Mason stacks A_{ij} number of cubes of size $1 \times 1 \times 1$ on the cell (i, j).

Given the description of the board showing the values of A_{ij} and that the price of the toy is equal to the 3d surface area find the price of the toy.

Input Format

The first line contains two space-separated integers ${m H}$ and ${m W}$ the height and the width of the board respectively.

The next H lines contains W space separated integers. The j^{th} integer in i^{th} line denotes A_{ij} .

Constraints

- $1 \le H, W \le 100$
- $1 \leq A_{i,j} \leq 100$

Output Format

Print the required answer, i.e the price of the toy, in one line.

Sample Input 0

1 1 1

Sample Output 0

6

Explanation 0

The surface area of $1\times1\times1\times1$ cube is 6. Sample Input 1

60

Sample Output 1

Explanation 1

The object is rotated so the front row matches column 1 of the input, heights 1, 2, and 1.

- The front face is 1 + 2 + 1 = 4 units in area.
- The top is 3 units.
- The sides are 4 units.

- None of the rear faces are exposed.
- The underside is 3 units.

The front row contributes 4 + 3 + 4 + 3 = 14 units to the surface area.