Madison is a little girl who is fond of toys. Her friend Mason works in a toy manufacturing factory . Mason has a 2D board A of size $H \times W$ with H rows and W columns. The board is divided into cells of size 1×1 with each cell indicated by its coordinate (i, j). The cell (i, j) has an integer $A_{i j}$ written on it. To create the toy Mason stacks $A_{i j}$ number of cubes of size $1 \times 1 \times 1$ on the cell (i, j).

Given the description of the board showing the values of $A_{i j}$ and that the price of the toy is equal to the 3d surface area find the price of the toy.

Input Format

The first line contains two space-separated integers H and W the height and the width of the board respectively.

The next H lines contains W space separated integers. The $j^{\text {th }}$ integer in $i^{\text {th }}$ line denotes $A_{i j}$.

Constraints

- $1 \leq H, W \leq 100$
- $1 \leq A_{i, j} \leq 100$

Output Format

Print the required answer, i.e the price of the toy, in one line.

Sample Input 0

```
1 1
1
```


Sample Output 0

6

Explanation 0

The surface area of $1 \times 1 \times 1$ cube is 6 .
Sample Input 1

```
3 3
1 3 4
2 3
1 24
```


Sample Output 1

```
6 0
```


Explanation 1

The object is rotated so the front row matches column 1 of the input, heights 1,2 , and 1 .

- The front face is $1+2+1=4$ units in area.
- The top is 3 units.
- The sides are 4 units.
- None of the rear faces are exposed.
- The underside is 3 units.

The front row contributes $4+3+4+3=14$ units to the surface area.

