Two positive integers P and S are given.
$S=\overline{d_{1} d_{2} \ldots d_{N}}$ is decimal representation of integer S.
Lets define $f(l, r)=\overline{d_{l} d_{l+1} \ldots d_{r}}$.
For example, if $S=9876$:
$d_{1}=9, d_{2}=8, d_{3}=7, d_{4}=6$
$f(2,3)=\overline{d_{2} d_{3}}=87$
$f(1,3)=\overline{d_{1} d_{2} d_{3}}=987$
$f(4,4)=\overline{d_{4}}=6$

For each query you will be given two integers b and e that define a substring equal to $f(b, e)$.
Your task is to calculate divisibility of given substring.
Divisibility of given substring is equal to number of (i, j) pairs such that:
$b \leq i \leq j \leq e$ and
$f(i, j)$ is divisible by P, assuming that 0 is divisible by any other integer.

Timelimits

Timelimits for this challenge is given here

Input Format

First line contains two integers P and Q separated by a single space. Q is the number of queries. Second line contains a big integer S.
Next Q lines contains two integers b and e separated by a single space each - begin and end points of substring.

Constraints

$2 \leq P \leq 10^{9}$
$1000 \leq S<10^{100} 000$
$1 \leq Q \leq 100000$
$1 \leq b \leq e \leq N$

Output Format

Output Q lines, the i-th line of the output should contain single integer divisibility of the i-th query substring.

Sample Input

```
3 5
4831318
3 5
```


Sample Output

```
2
3
9
1
1
```


Explanation

In the first query, $b=3$ and $e=5$. Two such pairs that are divisible by $P=3$ are $f(3,3)=3$ and $f(5,5)$. Hence the answer 2.
In the second query, $b=5$ and $e=7$. Three such pairs that are divisible by P are $F(5,5)=3, f(6,7)=$ 18 and $f(5,7)=318$

