
1/2

Abstract Classes -

Polymorphism

Abstract base classes in C++ can only be used as base classes. Thus, they are allowed to have virtual

member functions without definitions.

A cache is a component that stores data so future requests for that data can be served faster. The data

stored in a cache might be the results of an earlier computation, or the duplicates of data stored

elsewhere. A cache hit occurs when the requested data can be found in a cache, while a cache miss

occurs when it cannot. Cache hits are served by reading data from the cache which is faster than

recomputing a result or reading from a slower data store. Thus, the more requests that can be served

from the cache, the faster the system performs.

One of the popular cache replacement policies is: "least recently used" (LRU). It discards the least

recently used items first.

For example, if a cache with a capacity to store 5 keys has the following state(arranged from most

recently used key to least recently used key) -

5 3 2 1 4

Now, If the next key comes as 1(which is a cache hit), then the cache state in the same order will be -

1 5 3 2 4

Now, If the next key comes as 6(which is a cache miss), then the cache state in the same order will be -

6 1 5 3 2

You can observe that 4 has been discarded because it was the least recently used key and since the

capacity of cache is 5, it could not be retained in the cache any longer.

Given an abstract base class Cache with member variables and functions:

mp - Map the key to the node in the linked list

cp - Capacity

tail - Double linked list tail pointer

head - Double linked list head pointer

set() - Set/insert the value of the key, if present, otherwise add the key as the most recently used key. If

the cache has reached its capacity, it should replace the least recently used key with a new key.

get() - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return

-1.

You have to write a class LRUCache which extends the class Cache and uses the member functions and

variables to implement an LRU cache.

2/2

Input Format

First line of input will contain the number of lines containing or commands followed by the

capacity of the cache.

The following lines can either contain or commands.

An input line starting with will be followed by a to be found in the cache. An input line starting

with will be followed by the and respectively to be inserted/replaced in the cache.

Constraints

Output Format

The code provided in the editor will use your derived class LRUCache to output the value whenever a get

command is encountered.

Sample Input

3 1

set 1 2

get 1

get 2

Sample Output

2

-1

Explanation

Since, the capacity of the cache is 1, the first set results in setting up the key 1 with it's value 2. The first

get results in a cache hit of key 1, so 2 is printed as the value for the first get. The second get is a cache

miss, so -1 is printed.

