Accessory Collection

Victoria is splurging on expensive accessories at her favorite stores. Each store stocks A types of accessories, where the $i^{\text {th }}$ accessory costs i dollars $(1 \leq i \leq A)$. Assume that an item's type identifier is the same as its cost, and the store has an unlimited supply of each accessory.

Victoria wants to purchase a total of L accessories according to the following rule:
Any N-element subset of the purchased items must contain at least D different types of accessories.
For example, if $L=6, N=3$, and $D=2$, then she must choose 6 accessories such that any subset of 3 of the 6 accessories will contain at least 2 distinct types of items.

Given L, A, N, and D values for T shopping trips, find and print the maximum amount of money that Victoria can spend during each trip; if it's not possible for Victoria to make a purchase during a certain trip, print SAD instead. You must print your answer for each trip on a new line.

Input Format

The first line contains an integer, T, denoting the number of shopping trips.
Each of the T subsequent lines describes a single shopping trip as four space-separated integers corresponding to L, A, N, and D, respectively.

Constraints

- $1 \leq T \leq 10^{6}$
- $1 \leq D \leq N \leq L \leq 10^{5}$
- $1 \leq A \leq 10^{9}$
- The sum of the L 's for all T shopping trips $\leq 8 \cdot 10^{6}$.

Output Format

For each shopping trip, print a single line containing either the maximum amount of money Victoria can spend; if there is no collection of items satisfying her shopping rule for the trip's L, A, N, and D values, print SAD instead.

Sample Input

```
2
6}53
2 1 2 2
```


Sample Output

Explanation

Shopping Trip 1:
We know that:

- Victoria wants to buy $L=6$ accessories.
- The store stocks the following $A=5$ types of accessories: $\{1,2,3,4,5\}$.
- For any grouping of $N=3$ of her L accessories, there must be at least $D=2$ distinct types of accessories.

Victoria can satisfy her shopping rule and spend the maximum amount of money by purchasing the following set of accessories: $\{3,4,5,5,4,3\}$. The total cost is $3+4+5+5+4+3=24$, so we print 24 on a new line.

Shopping Trip 2:

We know that:

- Victoria wants to buy $L=2$ accessories.
- The store stocks $A=1$ type of accessory: $\{1\}$.
- For any grouping of $N=2$ of her L accessories, there must be at least $D=2$ distinct types of accessories.

Because the store only carries 1 type of accessory, Victoria cannot make a purchase satisfying the constraint that there be at least $D=2$ distinct types of accessories. Because Victoria will not purchase anything, we print that she is SAD on a new line.

