Almost Integer Rock Garden

HackerRank

Victor is building a Japanese rock garden in his 24×24 square courtyard. He overlaid the courtyard with a Cartesian coordinate system so that any point (x, y) in the courtyard has coordinates $x \in [-12, 12]$ and $y \in [-12, 12]$. Victor wants to place 12 stones in the garden according to the following rules:

- The center of each stone is located at some point (x, y), where x and y are integers $\in [-12, 12]$.
- The coordinates of all twelve stones are pairwise distinct.
- The Euclidean distance from the center of any stone to the origin is not an integer.
- The sum of Euclidean distances between all twelve points and the origin is an almost integer, meaning the absolute difference between this sum and an integer must be $\leq 10^{-12}$.

Given the values of x and y for the first stone Victor placed in the garden, place the remaining 11 stones according to the requirements above. For each stone you place, print two space-separated integers on a new line describing the respective x and y coordinates of the stone's location.

Input Format

Two space-separated integers describing the respective values of $m{x}$ and $m{y}$ for the first stone's location.

Constraints

• $-12 \leq x, y \leq 12$

Output Format

Print 11 lines, where each line contains two space-separated integers describing the respective values of $m{x}$ and $m{y}$ for a stone's location.

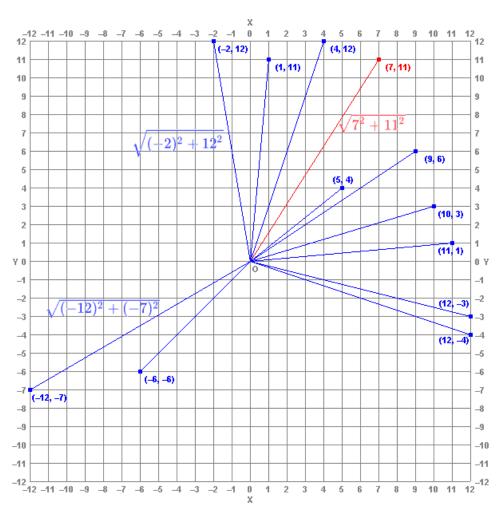
Sample Input 0

7	1	1

Sample Output 0

Explanation 0

The diagram below depicts the placement of each stone and maps its distance to the origin (note that *red* denotes the first stone placed by Victor and *blue* denotes the eleven remaining stones we placed):



Now, let's determine if the sum of these distances is an almost integer. First, we find the distance from the origin to the stone Victor placed at (7, 11), which is

 $\sqrt{7^2 + 11^2} \approx 13.038404810405297429165943114858}$. Next, we calculate the distances for the remaining stones we placed in the graph above:

- 1. $\sqrt{11^2 + 1^2} \approx 11.045361017187260774210913843344$ 2. $\sqrt{(-2)^2 + 12^2} \approx 12.165525060596439377999368490404$
- 3. $\sqrt{5^2 + 4^2} \approx 6.4031242374328486864882176746218$
- 4. $\sqrt{12^2 + (-3)^2} \approx 12.369316876852981649464229567922$
- 5. $\sqrt{10^2 + 3^2} \approx 10.440306508910550179757754022548$
- 6. $\sqrt{9^2 + 6^2} \approx 10.816653826391967879357663802411$
- 7. $\sqrt{(-12)^2 + (-7)^2} \approx 13.892443989449804508432547041029$

- 8. $\sqrt{1^2 + 11^2} \approx 11.045361017187260774210913843344$
- 9. $\sqrt{(-6)^2 + (-6)^2} \approx 8.4852813742385702928101323452582$
- 10. $\sqrt{12^2 + (-4)^2} \approx 12.649110640673517327995574177731$
- 11. $\sqrt{4^2 + 12^2} \approx 12.649110640673517327995574177731$