Gaming Array

Andy wants to play a game with his little brother, Bob. The game starts with an array of distinct integers and the rules are as follows:

- Bob always plays first.
- In a single move, a player chooses the maximum element in the array. He removes it and all elements to its right. For example, if the starting array $\operatorname{arr}=[2,3,5,4,1]$, then it becomes $a r r^{\prime}=[2,3]$ after removing $[5,4,1]$.
- The two players alternate turns.
- The last player who can make a move wins.

Andy and Bob play g games. Given the initial array for each game, find and print the name of the winner on a new line. If Andy wins, print AnDY; if Bob wins, print BOB.

To continue the example above, in the next move Andy will remove 3 . Bob will then remove 2 and win because there are no more integers to remove.

Function Description

Complete the gamingArray function in the editor below.
gamingArray has the following parameter(s):

- int arr[n]: an array of integers

Returns

- string: either ANDY or BOB

Input Format

The first line contains a single integer g, the number of games.
Each of the next g pairs of lines is as follows:

- The first line contains a single integer, n, the number of elements in arr.
- The second line contains n distinct space-separated integers $\operatorname{arr}[i]$ where $0 \leq i<n$.

Constraints

- Array arr contains n distinct integers.

For 35% of the maximum score:

- $1 \leq g \leq 10$
- $1 \leq n \leq 1000$
- $1 \leq \operatorname{arr}[i] \leq 10^{5}$
- The sum of n over all games does not exceed 1000 .

For 100% of the maximum score:

- $1 \leq g \leq 100$
- $1 \leq n \leq 10^{5}$
- $1 \leq a_{i} \leq 10^{9}$
- The sum of n over all games does not exceed 10^{5}.

Sample Input 0

```
2
2 6 3 4
3
```


Sample Output 0

ANDY

BOB

Explanation 0

Andy and Bob play the following two games:

1. Initially, the array looks like this:

5	2	6	3	4

In the first move, Bob removes 6 and all the elements to its right, resulting in $A=[5,2]$:

5	2	6	3	4

In the second move, Andy removes 5 and all the elements to its right, resulting in $A=[]$:

At this point, the array is empty and Bob cannot make any more moves. This means Andy wins, so we print Andy on a new line.
2. In the first move, Bob removes 3 and all the elements to its right, resulting in $A=[]$. As there are no elements left in the array for Andy to make a move, Bob wins and we print BOB on a new line.

Sample Input 1

```
2
3 7 9
4659
```


Sample Output 1

Explanation 1

In the first test, they alternate choosing the rightmost element until the end. Bob, Andy, Bob, Andy, Bob. In the second case, Bob takes 9 , Andy takes $[7,4,6,5]$.

