Gaming Array

Andy wants to play a game with his little brother, Bob. The game starts with an array of distinct integers and the rules are as follows:

- · Bob always plays first.
- In a single move, a player chooses the maximum element in the array. He removes it and all elements to its right. For example, if the starting array arr = [2, 3, 5, 4, 1], then it becomes arr' = [2, 3] after removing [5, 4, 1].
- The two players alternate turns.
- The last player who can make a move wins.

Andy and Bob play g games. Given the initial array for each game, find and print the name of the winner on a new line. If Andy wins, print $\frac{\text{ANDY}}{\text{BOB}}$; if Bob wins, print $\frac{\text{BOB}}{\text{BOB}}$.

To continue the example above, in the next move Andy will remove $\bf 3$. Bob will then remove $\bf 2$ and win because there are no more integers to remove.

Function Description

Complete the *gamingArray* function in the editor below.

gamingArray has the following parameter(s):

• int arr[n]: an array of integers

Returns

- string: either ANDY or BOB

Input Format

The first line contains a single integer q, the number of games.

Each of the next g pairs of lines is as follows:

- The first line contains a single integer, n, the number of elements in arr.
- ullet The second line contains n distinct space-separated integers arr[i] where $0 \leq i < n$.

Constraints

• Array arr contains n distinct integers.

For 35% of the maximum score:

- $1 \le g \le 10$
- $1 \le n \le 1000$
- $1 \leq arr[i] \leq 10^5$

• The sum of n over all games does not exceed 1000.

For 100% of the maximum score:

- $1 \le g \le 100$
- $1 \le n \le 10^5$
- $1 \leq a_i \leq 10^9$
- The sum of n over all games does not exceed 10^5 .

Sample Input 0

```
2
5
5 2 6 3 4
2
3 1
```

Sample Output 0

ANDY BOB

Explanation 0

Andy and Bob play the following two games:

1. Initially, the array looks like this:

In the first move, Bob removes $\bf 6$ and all the elements to its right, resulting in A=[5,2]:

In the second move, Andy removes ${f 5}$ and all the elements to its right, resulting in A=[] :

At this point, the array is empty and Bob cannot make any more moves. This means Andy wins, so we print ANDY on a new line.

2. In the first move, Bob removes $\bf 3$ and all the elements to its right, resulting in $\bf A=[]$. As there are no elements left in the array for Andy to make a move, Bob wins and we print [BOB] on a new line.

Sample Input 1

Sample Output 1

BOB ANDY

Explanation 1

In the first test, they alternate choosing the rightmost element until the end. Bob, Andy, Bob, Andy, Bob. In the second case, Bob takes 9, Andy takes [7,4,6,5].