AND xor OR

Given an array $A[]$ of N distinct elements. Let M_{1} and M_{2} be the smallest and the next smallest element in the interval $[L, R]$ where $1 \leq L<R \leq N$.
$S_{i}=\left(\left(\left(M_{1} \wedge M_{2}\right) \oplus\left(M_{1} \vee M_{2}\right)\right) \wedge\left(M_{1} \oplus M_{2}\right)\right)$.
where \wedge, \vee, \oplus, are the bitwise operators $A N D, O R$ and $X O R$ respectively.
Your task is to find the maximum possible value of S_{i}.

Input Format

First line contains integer N.
Second line contains N integers, representing elements of the array $A]$.

Constraints

$1<N \leq 10^{6}$
$1 \leq A_{i} \leq 10^{9}$

Output Format

Print the value of maximum possible value of S_{i}.
Sample Input

```
5
963 5 2
```


Sample Output

```
1 5
```


Explanation

Consider the interval $[1,2]$ the result will be maximum.
$(((9 \wedge 6) \oplus(9 \vee 6)) \wedge(9 \oplus 6))=15$

