AND xor OR

Given an array A[] of N distinct elements. Let M_1 and M_2 be the smallest and the next smallest element in the interval [L,R] where $1 \leq L < R \leq N$.

$$S_i = (((M_1 \wedge M_2) \oplus (M_1 \vee M_2)) \wedge (M_1 \oplus M_2)).$$

where \land, \lor, \oplus , are the bitwise operators AND, OR and XOR respectively. Your task is to find the maximum possible value of S_i .

Input Format

First line contains integer N.

Second line contains N integers, representing elements of the array $A[\hspace{-0.05cm}]$.

Constraints

$$1 < N \le 10^6$$

$$1 \leq A_i \leq 10^9$$

Output Format

Print the value of maximum possible value of S_i .

Sample Input

5 9 6 3 5 2

Sample Output

15

Explanation

Consider the interval $\left[1,2\right]$ the result will be maximum.

$$(((9 \land 6) \oplus (9 \lor 6)) \land (9 \oplus 6)) = 15$$