You are given two integers, N and M. Count the number of strings of length N (under the alphabet set of size M) that doesn't contain any palindromic string of the length greater than 1 as a consecutive substring.

Input Format

Several test cases will be given to you in a single file. The first line of the input will contain a single integer, T, the number of test cases.

Then there will be T lines, each containing two space-separated integers, N and M, denoting a single test case. The meanings of N and M are described in the Problem Statement above.

Output Format

For each test case, output a single integer - the answer to the corresponding test case. This number can be huge, so output it modulo $10^{9}+7$.

Constraints

$1 \leq T \leq 10^{5}$
$1 \leq N, M \leq 10^{9}$

Sample Input

```
2
2
2 3
```


Sample Output

2
6

Explanation

For the $1^{\text {st }}$ testcase, we have an alphabet of size $M=2$. For the sake of simplicity, let's consider the alphabet as $[A, B]$. We can construct four strings of size $N=2$ using these letters.

```
AA
AB
BA
BB
```

Out of these, we have two strings, $A B$ and $B A$, that satisfy the condition of not having a palindromic string of length greater than 1 . Hence, the answer 2.

For the $2^{\text {nd }}$ test case, we have an alphabet of size $M=3$. For the sake of simplicity, let's consider the alphabet as $[A, B, C]$. We can construct nine strings of size $N=2$ using these letters.

Save AA, $B B$, and $C C$, all the strings satisfy the given condition; hence, the answer 6 .

