Consider four numbers: A, B, C, and K. You must change at most K bits in A and B to form the numbers A^{\prime} and B^{\prime} satisfying the equation $A^{\prime} \mid B^{\prime}=C$. Here, the \mid symbol denotes the bitwise $O R$ operation.

Given Q sets of the numbers defined above, find and print the respective values of A^{\prime} and B^{\prime} on new lines; if no such value exists, print -1 instead. If there are multiple solutions, make A^{\prime} as small as possible; if there are still multiple solutions, make B^{\prime} as small as possible.

Notes:

- A, B, and C are given in Hexadecimal (base 16), and K is given in decimal (base 10).
- If the number of bits changed in A is k_{a} and the number of bits changed in B is k_{b}, then $k_{a}+k_{b}$ must be $\leq K$.

Input Format

The first line contains an integer, Q, denoting the number of queries. The subsequent lines describe each respective query as follows:

- The first line contains a single integer denoting the value of K.
- Each of the next 3 lines contains a Hexadecimal (base 16) number describing the respective values of A, B, and C.

Constraints

- $1 \leq Q \leq 5$
- $0 \leq K \leq 5 \times 10^{5}$
- $0<A, B, C<16^{5 \times 10^{4}}$

Output Format

Print two lines of output for each query:

1. The first line should contain a Hexadecimal (base 16) number denoting the value of A^{\prime}.
2. The second line must contain a Hexadecimal (base 16) number denoting the value of B^{\prime}.

If no valid answer exists, you must instead print one line of output with the integer -1 .
Note: The letters in Hexadecimal numbers must be in uppercase.

Sample Input

5
B9
40
5 A
2
91
BE
A8

Sample Output

\square

Explanation

Query 0:
In this query, $K=8$.
Change $A=(2 B)_{16}$ to $A^{\prime}=(8)_{16} .3$ bits are changed.

Change $B=(9 F)_{16}$ to $B^{\prime}=(58)_{16} .5$ bits are changed.

$A^{\prime}\left|B^{\prime}=(8)_{16}\right|(58)_{16}=(58)_{16}=C$
Query 1:
In this query, $K=5$.
Change $A=(B 9)_{16}$ to $A^{\prime}=(18)_{16} .3$ bits are changed.
Change $B=(40)_{16}$ to $B^{\prime}=(42)_{16}$. Only 1 bit is changed.
$A^{\prime}\left|B^{\prime}=(18)_{16}\right|(42)_{16}=(5 A)_{16}=C$
Query 2:
There is no valid answer, so we print -1 .

