Area Under Curves and Volume of Revolving a Curve

Definite Integrals via Numerical Methods

This relates to definite integration via numerical methods.

Consider the algebraic expression given by:
$\left(a_{1}\right) x^{b_{1}}+\left(a_{2}\right) x^{b_{2}}+\left(a_{3}\right) x^{b_{3}} \ldots .\left(a_{n}\right) x^{b_{n}}$
For the purpose of numerical computation, the area under the curve $y=f(x)$ between the limits a and b can be computed by the Limit Definition of a Definite Integral.

Here is some background about areas and volume computation.
Using equal subintervals of length $=0.001$, you need to:

1. Evaluate the area bounded by a given polynomial function of the kind described above, between the given limits of L and R.
2. Evaluate the volume of the solid obtained by revolving this polynomial curve around the x-axis.

A relative error margin of 0.01 will be tolerated.

Input Format

The first line contains N integers separated by spaces, which are the values of $a_{1}, a_{2} \ldots a_{N}$. The second line contains N integers separated by spaces, which are the values of $b_{1}, b_{2} \ldots b_{N}$. The third line contains two space separated integers, L and R, the lower and upper range limits in which the integration needs to be performed, respectively.

Constraints

$-1000<=a<=1000$
$-20<=b<=20$
$1<=L<R<=20$

Output Format

The first line should contain the area between the curve and the x-axis, bound between the specified limits.
The second line should contain the volume of the solid obtained by rotating the curve around the x-axis, between the specified limits.

Sample Input

Explanation

The algebraic expression represented by:
$(1) x^{6}+(2) x^{7}+(3) x^{8}+(4) x^{9}+(5) x^{10}$
We need to find the area of the curve enclosed under this curve, between the limits $x=1$ and 4 . We also need to find the volume of the solid formed by revolving this curve around the x-axis between the limits $x=1$ and 4 .

Sample Output

```
2435300.3
26172951168940.8
```


Scoring

All test cases are weighted equally. You need to clear all the tests in a test case.

