Arithmetic

 Progressions

 Progressions}

Let $F(a, d)$ denote an arithmetic progression (AP) with first term a and common difference d, i.e.
$F(a, d)$ denotes an infinite $A P=>a, a+d, a+2 d, a+3 d, \ldots$. You are given n APs =>
$F\left(a_{1}, d_{1}\right), F\left(a_{2}, d_{2}\right), F\left(a_{3}, d_{3}\right), \ldots F\left(a_{n}, d_{n}\right)$. Let $G\left(a_{1}, a_{2}, \cdots a_{n}, d_{1}, d_{2}, \cdots d_{n}\right)$ denote the sequence obtained by multiplying these APs.

Multiplication of two sequences is defined as follows. Let the terms of the first sequence be $A_{1}, A_{2}, \cdots A_{m}$, and terms of the second sequence be $B_{1}, B_{2}, \cdots B_{m}$. The sequence obtained by multiplying these two sequences is

$$
A_{1} \times B_{1}, A_{2} \times B_{2}, \cdots A_{m} \times B_{m}
$$

If $A_{1}, A_{2}, \cdots A_{m}$ are the terms of a sequence, then the terms of the first difference of this sequence are given by $A_{1}^{\prime}, A_{2}^{\prime}, \cdots, A_{m-1}^{\prime}$ calculated as $A_{2}-A_{1}, A_{3}-A_{2}, \cdots A_{m}-A_{(m-1)}$ respectively. Similarly, the second difference is given by $A_{2}^{\prime}-A_{1}^{\prime}, A_{3}^{\prime}-A_{2}^{\prime}, A_{m-1}^{\prime}-A_{m-2}^{\prime}$, and so on.

We say that the $k^{\text {th }}$ difference of a sequence is a constant if all the terms of the $k^{t h}$ difference are equal.
Let $F^{\prime}(a, d, p)$ be a sequence defined as $=>a^{p},(a+d)^{p},(a+2 d)^{p}, \cdots$
Similarly, $G^{\prime}\left(a_{1}, a_{2}, \cdots a_{n}, d_{1}, d_{2}, \cdots d_{n}, p_{1}, p_{2}, \cdots p_{n}\right)$ is defined as $=>$ product of $F^{\prime}\left(a_{1}, d_{1}, p_{1}\right), F^{\prime}\left(a_{2}, d_{2}, p_{2}\right), \cdots, F^{\prime}\left(a_{n}, d_{n}, p_{n}\right)$.

Task:

Can you find the smallest k for which the $k^{t h}$ difference of the sequence G^{\prime} is a constant? You are also required to find this constant value.

You will be given many operations. Each operation is of one of the two forms:

1) 0 i $j=>0$ indicates a query $(1 \leq i \leq j \leq n)$. You are required to find the smallest k for which the $k^{t h}$ difference of $G^{\prime}\left(a_{i}, a_{i+1}, \ldots a_{j}, d_{i}, d_{i+1}, \cdots d_{j}, p_{i}, p_{i+1}, \cdots p_{j}\right)$ is a constant. You should also output this constant value.
2) 1 i j v $=>1$ indicates an update $(1 \leq i \leq j \leq n)$. For all $i \leq k \leq j$, we update $p_{k}=p_{k}+v$.

Input Format

The first line of input contains a single integer n, denoting the number of APs.
Each of the next n lines consists of three integers $a_{i}, d_{i}, p_{i}(1 \leq i \leq n)$.
The next line consists of a single integer q, denoting the number of operations. Each of the next q lines consist of one of the two operations mentioned above.

Output Format

For each query, output a single line containing two space-separated integers K and V. K is the smallest value for which the $K^{t h}$ difference of the required sequence is a constant. V is the value of this constant. Since V might be large, output the value of V modulo 1000003. 1-based. Do not take modulo 1000003 for K.

Constraints

$1 \leq n \leq 10^{5}$
$1 \leq a_{i}, d_{i}, p_{i} \leq 10^{4}$
$1 \leq q \leq 10^{5}$
For updates of the form 1 i j v, $1 \leq v \leq 10^{4}$

Sample Input

```
2
1 2 1
5 1
0 1 2
1 1 1 1 1
0 1 1
```


Sample Output

```
2 12
2 8
```


Explanation

The first sequence given in the input is $=>1,3,5,7,9, \ldots$
The second sequence given in the input is $=>5,8,11,14,17, \ldots$
For the first query operation, we have to consider the product of these two sequences:
$=>1 \times 5,3 \times 8,5 \times 11,7 \times 14,9 \times 17, \ldots$
$=>5,24,55,98,153, \ldots$
First difference is => $19,31,43,55, \ldots$
Second difference is $=>12,12,12, \ldots$ This is a constant and hence the output is 212 .
After the update operation 1111 , the first sequence becomes $=>1^{2}, 3^{2}, 5^{2}, 7^{2}, 9^{2}, \ldots$ i.e $=>1,9,25,49,81, \ldots$

For the second query, we consider only the first sequence $=>1,9,25,49,81, \ldots$
First difference is $=>8,16,24,32, \ldots$
Second difference is $=>8,8,8, \ldots$ This is a constant and hence the output is 28

