Array and Queries

Given an array, you are asked to perform a number of queries and divide the array into what are called, beautiful subsequences.

The array A has length n. A function f(A) is defined to be a minimal possible x, such that it's possible to divide array A into x beautiful subsequences. Note that each element of an array should belong to exactly one subsequence, and subsequence does not necessarily need to be consecutive.

A subsequence S with length len is called beautiful if and only if:

- len = 1 or
- Let S' be a sorted version of S. It must hold that $S'_i = S'_{i+1} 1$ for every $i \in [1, len 1]$.

For instance, if A=[1,2,3,4,3,5], f(A) would be 2. Because, you can divide A into 2 beautiful subsequences either like [1,2,3] and [4,3,5] or like [1,2,3,4,5] and [3].

You have to answer q queries. Each query is of the type:

• $id\ val$: you need to change a value of A_{id} to val, i.e. $A_{id}=val$. Here id is 1-indexed.

After each query, for the value of f(A), lets denote that value as ans_i , where i indicates the i^{th} query.

You need to find $\sum_{i=1}^q i imes ans_i$ modulo $(10^9+7).$

Input Format

The first line contains a single integer n, representing the length of array A.

The next line contains the array A given as space-separated integers.

The next line contains a single integer $oldsymbol{q}_{\prime}$ representing the number of queries.

Each of the $m{q}$ lines contain two integers $m{id}$ and $m{val}$, which is described above.

Constraints

- $1 < n, q < 3 \times 10^5$
- $1 < A_i < 10^9$
- $1 \leq id \leq n$
- $1 \le val \le 10^9$

Output Format

Print the required answer in one line.

Sample Input 0

```
5
2 2 1 1 1
2
3 2
5 5
```

Sample Output 0

```
11
```

Explanation 0

The initial array A is [2,2,1,1,1]

- After $\mathbf{1}^{st}$ query the array becomes [2,2,2,1,1] this can be divided into $\mathbf{3}$ subsequences as [2,1], [2,1] and [2].
- After 2^{nd} query the array becomes [2,2,2,1,5] this can be divided into 4 subsequences as [2,1], [2], [2] and [5].

Hence, calculating $\sum i imes ans_i$ we get

$$1 \times 3 + 2 \times 4 \Rightarrow 11$$

Sample Input 1

```
2
3 3
3
2 4
1 5
2 2
```

Sample Output 1

```
9
```

Explanation 1

The initial array $m{A}$ is $[m{3},m{3}]$

- After $\mathbf{1}^{st}$ query the array becomes [3,4] this can be divided into 1 subsequence as [3,4].
- After 2^{nd} query the array becomes [5,4] this can be divided into 1 subsequence as [5,4].
- After $\mathbf{3}^{rd}$ query the array becomes [5,2] this can be divided into $\mathbf{2}$ subsequences as [5] and [2].

Hence, calculating $\sum i imes ans_i$ we get

$$1\times 1 + 2\times 1 + 3\times 2 \Rightarrow 9$$