Array and Queries

Given an array, you are asked to perform a number of queries and divide the array into what are called, beautiful subsequences.

The array A has length n. A function $f(A)$ is defined to be a minimal possible x, such that it's possible to divide array A into x beautiful subsequences. Note that each element of an array should belong to exactly one subsequence, and subsequence does not necessarily need to be consecutive.

A subsequence S with length len is called beautiful if and only if:

- len $=1$ or
- Let S^{\prime} be a sorted version of S. It must hold that $S_{i}^{\prime}=S_{i+1}^{\prime}-1$ for every $i \in[1$, len -1$]$.

For instance, if $A=[1,2,3,4,3,5], f(A)$ would be 2 . Because, you can divide A into 2 beautiful subsequences either like $[1,2,3]$ and $[4,3,5]$ or like $[1,2,3,4,5]$ and $[3]$.

You have to answer q queries. Each query is of the type:

- id val: you need to change a value of $A_{i d}$ to val, i.e. $A_{i d}=v a l$. Here $i d$ is $1-i n d e x e d$.

After each query, for the value of $f(A)$, lets denote that value as $a n s_{i}$, where i indicates the $i^{t h}$ query.
You need to find $\sum_{i=1}^{q} i \times a n s_{i}$ modulo $\left(10^{9}+7\right)$.

Input Format

The first line contains a single integer n, representing the length of array A.
The next line contains the array A given as space-separated integers.
The next line contains a single integer q, representing the number of queries.
Each of the q lines contain two integers $i d$ and $v a l$, which is described above.

Constraints

- $1 \leq n, q \leq 3 \times 10^{5}$
- $1 \leq A_{i} \leq 10^{9}$
- $1 \leq i d \leq n$
- $1 \leq v a l \leq 10^{9}$

Output Format

Print the required answer in one line.

Sample Input 0

Sample Output 0

11

Explanation 0

The initial array A is $[2,2,1,1,1]$

- After $1^{\text {st }}$ query the array becomes $[2,2,2,1,1]$ this can be divided into 3 subsequences as $[2,1]$, $[2,1]$ and [2].
- After $2^{n d}$ query the array becomes $[2,2,2,1,5]$ this can be divided into 4 subsequences as $[2,1]$, $[2]$, [2] and [5].

Hence, calculating $\sum i \times a n s_{i}$ we get

$$
1 \times 3+2 \times 4 \Rightarrow 11
$$

Sample Input 1

```
3
4
5
2
```


Sample Output 1

9

Explanation 1

The initial array A is $[3,3]$

- After $1^{\text {st }}$ query the array becomes $[3,4]$ this can be divided into 1 subsequence as $[3,4]$.
- After $2^{n d}$ query the array becomes $[5,4]$ this can be divided into 1 subsequence as $[5,4]$.
- After $3^{r d}$ query the array becomes $[5,2]$ this can be divided into 2 subsequences as $[5]$ and [2].

$$
1 \times 1+2 \times 1+3 \times 2 \Rightarrow 9
$$

