Array Construction

Professor GukiZ has hobby - constructing different arrays. His best student, Nenad, gave him the following task that he just can't manage to solve:

Construct an n-element array, A, where the sum of all elements is equal to s and the sum of absolute differences between each pair of elements is equal to k. All elements in A must be non-negative integers.

$$
\begin{gathered}
A_{0}+A_{1}+\ldots+A_{n-1}=s \\
\sum_{i=0}^{n-1} \sum_{j=i}^{n-1}\left|A_{i}-A_{j}\right|=k
\end{gathered}
$$

If there is more then one such array, you need to find the lexicographically smallest one. In the case no such array A exists, print -1 .

Note: An array, A, is considered to be lexicographically smaller than another array, B, if there is an index i such that $A_{i}<B_{i}$ and, for any index $j<i, A_{j}=B_{j}$.

Input Format

The first line contains an integer, q, denoting the number of queries.
Each of the q subsequent lines contains three space-separated integers describing the respective values of n (the number of elements in array A), s (the sum of elements in A), and k (the sum of absolute differences between each pair of elements).

Constraints

- $1 \leq q \leq 100$
- $1 \leq n \leq 50$
- $0 \leq s \leq 200$
- $0 \leq k \leq 2000$

Subtasks

For 10% of the maximum score:

- $1 \leq q \leq 10$
- $1 \leq n \leq 5$
- $0 \leq s \leq 10$
- $0 \leq k \leq 20$

For 50% of the maximum score:

- $1 \leq q \leq 10$
- $1 \leq n \leq 50$
- $0 \leq s \leq 100$
- $0 \leq k \leq 500$

Output Format

For each query, print n space-separated integers describing the respective elements of the lexicographically smallest array A satisfying the conditions given above. If no such array exists, print -1 instead.

Sample Input

```
1
3 3 4
```


Sample Output

012

Explanation

We have $q=1$ query in which $n=3, s=3$, and $k=4$. The lexicographically smallest array is $A=[0,1,2]$.

- The sum of array A 's elements is $0+1+2=3 \equiv s$
- The absolute differences between each pair of elements are:
$\left|A_{0}-A_{1}\right|=1$
$\left|A_{0}-A_{2}\right|=2$
$\left|A_{1}-A_{2}\right|=1$
The sum of these absolute differences is $1+1+2=4 \equiv k$
As array A is both lexicographically smallest and satisfies the given conditions, we print its contents on a new line as 012.

