Array Pairs

Consider an array of n integers, $A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$. Find and print the total number of (i, j) pairs such that $a_{i} \times a_{j} \leq \max \left(a_{i}, a_{i+1}, \ldots, a_{j}\right)$ where $i<j$.

Input Format

The first line contains an integer, n, denoting the number of elements in the array.
The second line consists of n space-separated integers describing the respective values of $a_{1}, a_{2}, \ldots, a_{n}$.

Constraints

- $1 \leq n \leq 5 \times 10^{5}$
- $1 \leq a_{i} \leq 10^{9}$

Scoring

- $1 \leq n \leq 1000$ for 25% of the test cases.
- $1 \leq n \leq 10^{5}$ for 50% of the test cases.
- $1 \leq n \leq 5 \times 10^{5}$ for 100% of the test cases.

Output Format

Print a long integer denoting the total number (i, j) pairs satisfying $a_{i} \times a_{j} \leq \max \left(a_{i}, a_{i+1}, \ldots, a_{j}\right)$ where $i<j$.

Sample Input

5

```
1 1 2 4 2
```


Sample Output

Explanation

There are eight pairs of indices satisfying the given criteria: $(1,2),(1,3),(1,4),(1,5),(2,3),(2,4)$, $(2,5)$, and $(3,5)$. Thus, we print 8 as our answer.

