Coprime Conundrum

Arthur defines a function, $f(k)$, to be the number of (p, q) pairs such that:

- $1<p \leq q \leq k$
- p and q are coprime.
- $p \cdot q=k$

Given an integer, n, help Arthur find and print the result of:

$$
\sum_{k=1}^{n} f(k)
$$

Input Format

The first line contains a single integer denoting n.

Constraints

- $1 \leq n \leq 10^{9}$

Subtasks

- $1 \leq n \leq 150$ for 30% of the maximum score.
- $1 \leq n \leq 10^{6}$ for 60% of the maximum score.

Output Format

Print the result of $\sum_{k=1}^{n} f(k)$ on a new line.

Sample Input

12

Sample Output

3

Explanation

The value of $f(k)$ for $1 \leq k \leq 12$ is:

- For $k=6$, there is only 1 valid pair, $(2,3)$, so $f(6)=1$.
- For $k=10$, there is only 1 valid pair, $(2,5)$, so $f(10)=1$
- For $k=12$, there is only 1 valid pair, $(3,4)$, so $f(12)=1$
- For all other $1 \leq k \leq 12$, the function returns 0 .

Thus, our final sum is the result of $1+1+1=3$.

