Coprime Conundrum

HackerRank

Arthur defines a function, f(k), to be the number of (p,q) pairs such that:

- 1
- p and q are coprime.
- $p \cdot q = k$

Given an integer, n, help Arthur find and print the result of:

$$\sum_{k=1}^n f(k)$$

Input Format

The first line contains a single integer denoting n.

Constraints

•
$$1 \le n \le 10^9$$

Subtasks

- $1 \le n \le 150$ for 30% of the maximum score.
- $1 \leq n \leq 10^6$ for 60% of the maximum score.

Output Format

Print the result of $\sum_{k=1}^n f(k)$ on a new line.

Sample Input

12

Sample Output

3

Explanation

The value of f(k) for $1 \leq k \leq 12$ is:

- For k=6, there is only 1 valid pair, (2,3), so f(6)=1.
- ullet For k=10, there is only 1 valid pair, (2,5), so f(10)=1
- ullet For k=12, there is only 1 valid pair, (3,4), so f(12)=1

• For all other $1 \leq k \leq 12$, the function returns 0.

Thus, our final sum is the result of 1+1+1=3.