Ashton and String

Ashton appeared for a job interview and is asked the following question. Arrange all the distinct substrings of a given string in lexicographical order and concatenate them. Print the k^{th} character of the concatenated string. It is assured that given value of k will be valid i.e. there will be a k^{th} character. Can you help Ashton out with this?

For example, given the string $s={\tt abc}$, its distinct substrings are

[a, ab, abc, abcd, b, bc, bcd, c, cd, d]. Sorted and concatenated, they make the string aababcabcdbbcbcdccdd. If K=5 then, the answer is b, the 5^{th} character of the 1-indexed concatenated string.

Note We have distinct substrings here, i.e. if string is aa, it's distinct substrings are a and aa.

Function Description

Complete the *ashtonString* function in the editor below. It should return the k^{th} character from the concatenated string, 1-based indexing.

ashtonString has the following parameters:

- s: a string
- k: an integer

Input Format

The first line will contain an integer t, the number of test cases.

Each of the subsequent t pairs of lines is as follows:

- The first line of each test case contains a string, s.
- The second line contains an integer, $m{k}$.

Constraints

$$1 \le t \le 5$$
$$1 \le |s| \le 10^5$$

Each character of string $s \in ascii[a-z]$

 $m{k}$ will be an appropriate integer.

Output Format

Print the k^{th} character (1-based index) of the concatenation of the ordered distinct substrings of s.

Sample Input

Sample Output

С

Explanation

The substrings when arranged in lexicographic order are as follows

```
a, ac, b, ba, bac, c, d, db, dba, dbac
```

On concatenating them, we get

aacbbabaccddbdbadbac

The third character in this string is c.