Baby Step, Giant Step

You are standing at point $(0,0)$ on an infinite plane. In one step, you can move from some point $\left(x_{f}, y_{f}\right)$ to any point $\left(x_{t}, y_{t}\right)$ as long as the Euclidean distance, $\sqrt{\left(x_{f}-x_{t}\right)^{2}+\left(y_{f}-y_{t}\right)^{2}}$, between the two points is either a or b. In other words, each step you take must be exactly a or b in length.

You are given q queries in the form of a, b, and d. For each query, print the minimum number of steps it takes to get from point $(0,0)$ to point $(d, 0)$ on a new line.

Input Format

The first line contains an integer, q, denoting the number of queries you must process.
Each of the q subsequent lines contains three space-separated integers describing the respective values of a, b, and d for a query.

Constraints

- $1 \leq q \leq 10^{5}$
- $1 \leq a<b \leq 10^{9}$
- $0 \leq d \leq 10^{9}$

Output Format

For each query, print the minimum number of steps necessary to get to point $(d, 0)$ on a new line.

Sample Input 0

```
3
2 3 1
1 2 0
3411
```


Sample Output 0

```
2
0
3
```


Explanation 0

We perform the following $q=3$ queries:

1. One optimal possible path requires two steps of length $a=2:(0,0) \overrightarrow{2}\left(\frac{1}{2}, \frac{\sqrt{15}}{2}\right) \overrightarrow{2}(1,0)$. Thus, we print the number of steps, 2 , on a new line.
2. The starting and destination points are both $(0,0)$, so we needn't take any steps. Thus, we print 0 on a new line.
3. One optimal possible path requires two steps of length $b=4$ and one step of length $a=3$: $(0,0) \overrightarrow{4}(4,0) \overrightarrow{4}(8,0) \overrightarrow{3}(11,0)$. Thus, we print 3 on a new line.
