You are given an integer n. A set, S, of triples $\left(x_{i}, y_{i}, z_{i}\right)$ is beautiful if and only if:

- $0 \leq x_{i}, y_{i}, z_{i}$
- $x_{i}+y_{i}+z_{i}=n, \forall i: 1 \leq i \leq|S|$
- Let X be the set of different x_{i} 's in S, Y be the set of different y_{i} 's in S, and Z be the set of different z_{i} in S. Then $|X|=|Y|=|Z|=|S|$.

The third condition means that all x_{i} 's are pairwise distinct. The same goes for y_{i} and z_{i}.
Given n, find any beautiful set having a maximum number of elements. Then print the cardinality of S (i.e., $|S|$) on a new line, followed by $|S|$ lines where each line contains 3 space-separated integers describing the respective values of x_{i}, y_{i}, and z_{i}.

Input Format

A single integer, n.

Constraints

$$
\text { - } 1 \leq n \leq 300
$$

Output Format

On the first line, print the cardinality of S (i.e., $|S|$).
For each of the $|S|$ subsequent lines, print three space-separated numbers per line describing the respective values of x_{i}, y_{i}, and z_{i} for triple i in S.

Sample Input

```
3
```


Sample Output

\square

Explanation

In this case, $n=3$. We need to construct a set, S, of non-negative integer triples (x_{i}, y_{i}, z_{i}) where $x_{i}+y_{i}+z_{i}=n$. S has the following triples:

1. $\left(x_{1}, y_{1}, z_{1}\right)=(0,1,2)$
2. $\left(x_{2}, y_{2}, z_{2}\right)=(2,0,1)$

We then print the cardinality of this set, $|S|=3$, on a new line, followed by 3 lines where each line contains three space-separated values describing a triple in S.

