Given a sequence of integers a, a triplet $(a[i], a[j], a[k])$ is beautiful if:

- $i<j<k$
- $a[j]-a[i]=a[k]-a[j]=d$

Given an increasing sequenc of integers and the value of d, count the number of beautiful triplets in the sequence.

Example

$\operatorname{arr}=[2,2,3,4,5]$
$d=1$
There are three beautiful triplets, by index: $[i, j, k]=[0,2,3],[1,2,3],[2,3,4]$. To test the first triplet, $\operatorname{arr}[j]-\operatorname{arr}[i]=3-2=1$ and $\operatorname{arr}[k]-\operatorname{arr}[j]=4-3=1$.

Function Description

Complete the beautifulTriplets function in the editor below.
beautifulTriplets has the following parameters:

- int d : the value to match
- int arr[n]: the sequence, sorted ascending

Returns

- int: the number of beautiful triplets

Input Format

The first line contains 2 space-separated integers, n and d, the length of the sequence and the beautiful difference.
The second line contains n space-separated integers $\operatorname{arr}[i]$.

Constraints

- $1 \leq n \leq 10^{4}$
- $1 \leq d \leq 20$
- $0 \leq \operatorname{arr}[i] \leq 2 \times 10^{4}$
- $\operatorname{arr}[i]>\operatorname{arr}[i-1]$

Sample Input

```
1 2 4 5 7 8 10 arr = [1, 2, 4, 5, 7, 8, 10]
```


Sample Output

3

Explanation

There are many possible triplets ($\operatorname{arr}[i], \operatorname{arr}[j], \operatorname{arr}[k])$, but our only beautiful triplets are $(1,4,7)$, $(4,7,10)$ and $(2,5,8)$ by value, not index. Please see the equations below:
$7-4=4-1=3=d$
$10-7=7-4=3=d$
$8-5=5-2=3=d$

Recall that a beautiful triplet satisfies the following equivalence relation:
$\operatorname{arr}[j]-\operatorname{arr}[i]=\operatorname{arr}[k]-\operatorname{arr}[j]=d$ where $i<j<k$.

