Between Two Sets

There will be two arrays of integers. Determine all integers that satisfy the following two conditions:

1. The elements of the first array are all factors of the integer being considered
2. The integer being considered is a factor of all elements of the second array

These numbers are referred to as being between the two arrays. Determine how many such numbers exist.

Example
$a=[2,6]$
$b=[24,36]$
There are two numbers between the arrays: 6 and 12 .
$6 \% 2=0,6 \% 6=0,24 \% 6=0$ and $36 \% 6=0$ for the first value.
$12 \% 2=0,12 \% 6=0$ and $24 \% 12=0,36 \% 12=0$ for the second value. Return 2 .

Function Description

Complete the getTotal X function in the editor below. It should return the number of integers that are betwen the sets.
getTotalX has the following parameter(s):

- int $a[n]$: an array of integers
- int $b[m]$: an array of integers

Returns

- int: the number of integers that are between the sets

Input Format

The first line contains two space-separated integers, n and m, the number of elements in arrays a and b.
The second line contains n distinct space-separated integers $a[i]$ where $0 \leq i<n$. The third line contains m distinct space-separated integers $b[j]$ where $0 \leq j<m$.

Constraints

- $1 \leq n, m \leq 10$
- $1 \leq a[i] \leq 100$
- $1 \leq b[j] \leq 100$

Sample Input

Sample Output

3

Explanation

2 and 4 divide evenly into $4,8,12$ and 16.
4,8 and 16 divide evenly into $16,32,96$.
4,8 and 16 are the only three numbers for which each element of a is a factor and each is a factor of all elements of b.

