
1/3

Breadth First Search:

Shortest Reach

Consider an undirected graph where each edge weighs 6 units. Each of the nodes is labeled consecutively

from 1 to n.

You will be given a number of queries. For each query, you will be given a list of edges describing an

undirected graph. After you create a representation of the graph, you must determine and report the

shortest distance to each of the other nodes from a given starting position using the breadth-first search

algorithm (BFS). Return an array of distances from the start node in node number order. If a node is

unreachable, return for that node.

Example

The following graph is based on the listed inputs:

 // number of nodes

 // number of edges

 // starting node

All distances are from the start node . Outputs are calculated for distances to nodes through :

. Each edge is units, and the unreachable node has the required return distance of .

Function Description

Complete the bfs function in the editor below. If a node is unreachable, its distance is .

bfs has the following parameter(s):

int n: the number of nodes

int m: the number of edges

int edges[m][2]: start and end nodes for edges

int s: the node to start traversals from

Returns

int[n-1]: the distances to nodes in increasing node number order, not including the start node (-1 if a

https://en.wikipedia.org/wiki/Breadth-first_search

2/3

node is not reachable)

Input Format

The first line contains an integer , the number of queries. Each of the following sets of lines has the

following format:

The first line contains two space-separated integers and , the number of nodes and edges in the

graph.

Each line of the subsequent lines contains two space-separated integers, and , that describe

an edge between nodes and .

The last line contains a single integer, , the node number to start from.

Constraints

Sample Input

2

4 2

1 2

1 3

1

3 1

2 3

2

Sample Output

6 6 -1

-1 6

Explanation

We perform the following two queries:

1. The given graph can be represented as:

where our start node, , is node . The shortest distances from to the other nodes are one edge to

3/3

node , one edge to node , and an infinite distance to node (which it is not connected to). We

then return an array of distances from node to nodes , , and (respectively): .

2. The given graph can be represented as:

where our start node, , is node . There is only one edge here, so node is unreachable from node

 and node has one edge connecting it to node . We then return an array of distances from node

 to nodes , and (respectively): .

Note: Recall that the actual length of each edge is , and we return as the distance to any node that

is unreachable from .

