Bitwise Operators

In this challenge, you will use logical bitwise operators. All data is stored in its binary representation. The logical operators, and C language, use 1 to represent true and 0 to represent false. The logical operators compare bits in two numbers and return true or false, 0 or 1 , for each bit compared.

- Bitwise AND operator \& The output of bitwise AND is 1 if the corresponding bits of two operands is 1 . If either bit of an operand is 0 , the result of corresponding bit is evaluated to 0 . It is denoted by \&.
- Bitwise OR operator | The output of bitwise OR is 1 if at least one corresponding bit of two operands is 1 . It is denoted by \mid.
- Bitwise XOR (exclusive OR) operator ^ The result of bitwise XOR operator is 1 if the corresponding bits of two operands are opposite. It is denoted by \oplus.

For example, for integers 3 and 5,

```
3 = 00000011 (In Binary)
5 = 00000101 (In Binary)
AND operation
    OR operation
    00000011 00000011 00000011
&00000101 | 00000101 ^ 00000101
    000000001 = = }\overline{00000111}=7\quad\overline{00000110}=
```

You will be given an integer n, and a threshold, k. Foreachnumberifrom 1 throughn
, findthemaximumvalueofthelogicaland, orandxorwhencomparedagainstallintegersthroughn thataregreaterthani. Consideravalueonlyifthecomparisonreturnsaresultlessthank\$. Print the results of the and, or and exclusive or comparisons on separate lines, in that order.

Example

$n=3$
$k=3$
The results of the comparisons are below:

a	b	and		or	xor
1	2	0	3	3	
1	3	1	3	2	
2	3	2	3	1	

For the and comparison, the maximum is 2 . For the or comparison, none of the values is less than k, so the maximum is 0 . For the xor comparison, the maximum value less than k is 2 . The function should print:

Function Description

Complete the calculate_the_maximum function in the editor below.
calculate_the_maximum has the following parameters:

- int n : the highest number to consider
- int k : the result of a comparison must be lower than this number to be considered

Prints

Print the maximum values for the and, or and xor comparisons, each on a separate line.

Input Format

The only line contains 2 space-separated integers, n and k.

Constraints

- $2 \leq n \leq 10^{3}$
- $2 \leq k \leq n$

Sample Input 0

```
54
```


Sample Output 0

```
2
3
3
```


Explanation 0

$n=5, k=4$
$S=\{1,2,3,4,5\}$
All possible values of a and b are:

1. $\mathrm{a}=1, \mathrm{~b}=2 ; \mathrm{a} \& \mathrm{~b}=0 ; \mathrm{a} \mid \mathrm{b}=3 ; \mathrm{a} \oplus \mathrm{b}=3 ;$
2. $\mathrm{a}=1, \mathrm{~b}=3 ; \mathrm{a} \& \mathrm{~b}=1 ; \mathrm{a} \mid \mathrm{b}=3 ; \mathrm{a} \oplus \mathrm{b}=2 ;$
3. $\mathrm{a}=1, \mathrm{~b}=4 ; \mathrm{a} \& \mathrm{~b}=0 ; \mathrm{a} \mid \mathrm{b}=5 ; \mathrm{a} \oplus \mathrm{b}=5 ;$
4. $\mathrm{a}=1, \mathrm{~b}=5 ; \mathrm{a} \& \mathrm{~b}=1 ; \mathrm{a} \mid \mathrm{b}=5 ; \mathrm{a} \oplus \mathrm{b}=4 ;$
5. $\mathrm{a}=2, \mathrm{~b}=3 ; \mathrm{a} \& \mathrm{~b}=2 ; \mathrm{a} \mid \mathrm{b}=3 ; \mathrm{a} \oplus \mathrm{b}=1 ;$
6. $\mathrm{a}=2, \mathrm{~b}=4 ; \mathrm{a} \& \mathrm{~b}=0 ; \mathrm{a} \mid \mathrm{b}=6 ; \mathrm{a} \oplus \mathrm{b}=6 ;$
7. $\mathrm{a}=2, \mathrm{~b}=5 ; \mathrm{a} \& \mathrm{~b}=0 ; \mathrm{a} \mid \mathrm{b}=7 ; \mathrm{a} \oplus \mathrm{b}=7 ;$
8. $\mathrm{a}=3, \mathrm{~b}=4 ; \mathrm{a} \& \mathrm{~b}=0 ; \mathrm{a} \mid \mathrm{b}=7 ; \mathrm{a} \oplus \mathrm{b}=7 ;$
9. $\mathrm{a}=3, \mathrm{~b}=5 ; \mathrm{a} \& \mathrm{~b}=1 ; \mathrm{a} \mid \mathrm{b}=7 ; \mathrm{a} \oplus \mathrm{b}=6 ;$
10. $\mathrm{a}=4, \mathrm{~b}=5 ; \mathrm{a} \& \mathrm{~b}=4 ; \mathrm{a} \mid \mathrm{b}=5 ; \mathrm{a} \oplus \mathrm{b}=1$;

- The maximum possible value of $a \& b$ that is also $<(k=4)$ is 2 , so we print 2 on first line.
- The maximum possible value of $a \mid b$ that is also $<(k=4)$ is 3 , so we print 3 on second line.
- The maximum possible value of $a \oplus b$ that is also $<(k=4)$ is 3 , so we print 3 on third line.

