Black and White Tree

Nikita is making a graph as a birthday gift for her boyfriend, a fellow programmer! She drew an undirected connected graph with N nodes numbered from 1 to N in her notebook.

Each node is shaded in either white or black. We define n_{W} to be the number of white nodes, and n_{B} to be the number of black nodes. The graph is drawn in such a way that:

- No 2 adjacent nodes have same coloring.
- The value of $\left|n_{W}-n_{B}\right|$, which we'll call D, is minimal.

Nikita's mischievous little brother erased some of the edges and all of the coloring from her graph! As a result, the graph is now decomposed into one or more components. Because you're her best friend, you've decided to help her reconstruct the graph by adding K edges such that the aforementioned graph properties hold true.

Given the decomposed graph, construct and shade a valid connected graph such that the difference $\left|n_{W}-n_{B}\right|$ between its shaded nodes is minimal.

Input Format

The first line contains 2 space-separated integers, N (the number of nodes in the original graph) and M (the number of edges in the decomposed graph), respectively.
The M subsequent lines each contain 2 space-separated integers, u and v, describing a bidirectional edge between nodes u and v in the decomposed graph.

Constraints

- $1 \leq N \leq 2 \times 10^{5}$
- $0 \leq M \leq \min \left(5 \times 10^{5}, \frac{N \times(N-1)}{2}\right)$
- It is guaranteed that every edge will be between 2 distinct nodes, and there will never be more than 1 edge between any 2 nodes.
- Your answer must meet the following criteria:
- The graph is connected and no 2 adjacent nodes have the same coloring.
- The value of $\left|n_{B}-n_{W}\right|$ is minimal.
- $K \leq 2 \times 10^{5}$

Output Format

You must have $K+1$ lines of output. The first line contains 2 space-separated integers: D (the minimum possible value of $\left|n_{B}-n_{W}\right|$) and K (the number of edges you've added to the graph), respectively.
Each of the K subsequent lines contains 2 space-separated integers, u and v, describing a newly-added bidirectional edge in your final graph (i.e.: new edge $u \leftrightarrow v$).

You may print any 1 of the possible reconstructions of Nikita's graph such that the value of D in the reconstructed shaded graph is minimal.

Sample Input 0

\square

Sample output 0

00

Sample Input 1

```
8 6
1 2
34
3 5
36
37
3 8
```


Sample Output 1

```
4 1
1 5
```


Sample Input 2

```
5 4
1 2
2 3
34
4 1
```


Sample Output 2

```
1 2
2 5
4
```


Explanation

In the figure below, the solid lines show the decomposed graph after Nikita's brother erased the edges, and the dotted lines show one possible correct answer:

In Sample 0, no additional edges are added and $K=0$. Because $n_{W}=4$ and $n_{B}=4$, we get $\left|n_{W}-n_{B}\right|=0$. Thus, we print 0 o on a new line (there is only 1 line of output, as $K=0$).

In Sample 1 , the only edge added is $(5,1)$, so $K=1$. Here, $n_{W}=6$ and $n_{B}=2$, so $\left|n_{W}-n_{B}\right|=4$. Thus, we print 41 on the first line. Next, we must print K lines describing each edge added; because $K=1$, we print a single line describing the 2 space-separated nodes connected by our new edge: 15 . In Sample 2 , we can either add 1 edge $(2,5)$ or $(4,5)$, or both of them. In both cases we get $n_{W}=2$ and $n_{B}=3$, so $\left|n_{W}-n_{B}\right|=1$. Thus $D=1$ and $K=1$ or 2 both are correct.

