Boleyn Salary

HackerRank

Boleyn Su runs a company called Acme. There are N employees in the company, and each one of them is represented by a unique employee id whose range lies in [1, N]. Being the head of company, Boleyn's employee id is 1.

Each employee, except Boleyn, has exactly one direct superior. This means that the hierarchial structure of the company is like a tree, where

- 1. Boleyn, employee id 1, represents the root node.
- 2. Each pair of employee is directly or indirectly connected to one another.
- 3. There is no cycle.

Let's represent the salary by the array $s = \{s[1], s[2], s[3], ..., s[N]\}$, where s[i] is the salary of the i^{th} employee. Salary structure in the company is non-uniform. Even a subordinate may get a higher salary than her superior. Some of the employees in Acme are curious about who gets the k^{th} lowest salary among her subordinates. Help them in solving their query.

Note

- 1. 1^{st} lowest salary is equivalent to lowest salary, 2^{nd} lowest means lowest salary which is greater that 1^{st} lowest salary, and so on.
- 2. Salary of each employee is different.
- 3. It is not necessary that the people who are placed higher on hierarchy will have a greater salary than their subordinates.

Input Format

The first line contains two space separated integers, N Q, where N is the number of employees in Acme, and Q is the number of queries.

Then follows N-1 lines. Each of these lines contain two space separated integers, u p, where p is the superior of u. u and p are employees id.

In the next line there are N space separated integers, $s[1] s[2] \dots s[n]$, where s[i], $i \in [1..N]$, is the salary of i^{th} employee.

Then, Q queries follow. Each query contains two space separated integers, v k. See output format for it's definition.

Output format

For the first query, print the id of employee who has the k^{th} lowest salary among the subordinates of v. For the subsequent queries, we need to find the k^{th} lowest salary of the subordinates of v+d, where d is the answer of previous query.

Constraints

```
1 \le N \le 3*10^4

1 \le Q \le 3*10^4

1 \le s[i] \le 10^9, i \in [1..N]

s[i] \ne s[j], 1 \le i < j \le N
```

 $1 \le u, p \le N, u \ne p$ - $N \le d \le N$ For 1^{st} query, $1 \le v \le N$ For later queries, $1 \le v+d \le N$ For each query, $1 \le K \le$ Number_of_subordinates

Sample Input

8 7	
2 1	
3 2	
4 2	
7 4	
8 4	
5 1	
6 5	
70 40 60 80 10 20 30 50	
2 1	
-6 5	
-4 1	
-5 3	
2 1	
-5 4	
2 2	

Sample Output

7 8 7

3

6

2

8

Explanation

Tree structure will be

```
1(70)

/ \

2(40) 5(10)

/ \

3(60) 4(80) 6(20)

/ \

3(60) 8(50)
```

Query #1 Node = 2, k = 1: Subordinates, in increasing order of salary, are (7, 30), (8, 50), (3, 60), (4, 80). So employee 7 has the 1^{st} lowest salary among the subordinates of 2. Query #2 Node = -6+7 = 1, k = 5: Subordinates are (5, 10), (6, 20), (7, 30), (2, 40), (8, 50), (3, 60), (4, 80) . 8^{th} employee has the 5^{th} lowest salary among the subordinate of 1. Query #3 Node = -4+8 = 4, k = 1: Subordinates are (7, 30), (8, 50) . Similarly 7 is the answer of this query. Query #4 Node = -5+7 = 2, k = 3: Subordinates are (7, 30), (8, 50), (3, 60), (4, 80). Similarly 3 is the answer for this query.

```
Query #5 Node = 2+3 = 5, k = 1: Subordinates are (6, 20). 6^{th} employee has the most, and only,
lowest salary.
Query #6 Node = -5+6 = 1, k = 4: Subordinates are (5, 10), (6, 20), (7, 30), (2, 40), (8, 50), (3, 60),
(4, 80). 2 is answer of this query.
Query #7 Node = 2+2 = 4, k = 2: Subordinates are (7, 30), (8, 50). Employee 8 has the second
lowest salaries among the subordinates of 4.
```

Tested by: scturtle