Box Operations

Alice purchased an array of n wooden boxes that she indexed from 0 to $n-1$. On each box i, she writes an integer that we'll refer to as $b o x_{i}$.

Alice wants you to perform q operations on the array of boxes. Each operation is in one of the following forms:
(Note: For each type of operations, $l \leq i \leq r$)

- 1 lrc: Add c to each $b o x_{i}$. Note that c can be negative.
- 21 r d: Replace each $b o x_{i}$ with $\left\lfloor\frac{b o x_{i}}{d}\right\rfloor$.
- 3 l r : Print the minimum value of any box $_{i}$.
- 4 l r : Print the sum of all $b o x_{i}$.

Recall that $\lfloor x\rfloor$ is the maximum integer y such that $y \leq x$ (e.g., $\lfloor-2.5\rfloor=-3$ and $\lfloor-7\rfloor=-7$).
Given n, the value of each $b o x_{i}$, and q operations, can you perform all the operations efficiently?

Input Format

The first line contains two space-separated integers denoting the respective values of n (the number of boxes) and q (the number of operations).
The second line contains n space-separated integers describing the respective values of $b o x_{0}, b o x_{1}, \ldots, b o x_{n-1}$ (i.e., the integers written on each box).
Each of the q subsequent lines describes an operation in one of the four formats defined above.

Constraints

- $1 \leq n, q \leq 10^{5}$
- $-10^{9} \leq$ box $_{i} \leq 10^{9}$
- $0 \leq l \leq r \leq n-1$
- $-10^{4} \leq c \leq 10^{4}$
- $2 \leq d \leq 10^{9}$

Output Format

For each operation of type 3 or type 4 , print the answer on a new line.

Sample Input 0

```
10 10
-5
1 0 4 1
```

```
2
30}
4 0 9
3 0 1
4 3
3 45
4 67
3 8
```


Sample Output 0

\square

Explanation 0

Initially, the array of boxes looks like this:

We perform the following sequence of operations on the array of boxes:

1. The first operation is 1041 , so we add 1 to each $b o x_{i}$ where $0 \leq i \leq 4$:

2. The second operation is 1591 , so we add $c=1$ to each $b o x_{i}$ where $5 \leq i \leq 9$:

3. The third operation is 2093 , so we divide each $b o x_{i}$ where $0 \leq i \leq 9$ by $d=3$ and take the floor:

4. The fourth operation is 309 , so we print the minimum value of $b o x_{i}$ for $0 \leq i \leq 9$, which is the result of $\min (-2,-1,-1,-1,0,0,0,1,1,1)=-2$.
5. The fifth operation is 409 , so we print the sum of $b o x_{i}$ for $0 \leq i \leq 9$, which is the result of $-2+-1+-1+-1+0+0+0+1+1+1=-2$.
... and so on.
