Consider a binary search tree T which is initially empty. Also, consider the first N positive integers $\{1,2$, $3,4,5, \ldots, N\}$ and its permutation $P\left\{a_{1}, a_{2}, \ldots, a_{N}\right\}$.

If we start adding these numbers to the binary search tree T, starting from a_{1}, continuing with a_{2}, \ldots (and so on) ..., ending with a_{N}. After every addition we ask you to output the sum of distances between every pair of T s nodes.

Input Format

The first line of the input consists of the single integer \mathbf{N}, the size of the list.
The second line of the input contains \mathbf{N} single space separated numbers the permutation $a_{1}, a_{2}, \ldots, a_{N}$ itself.

Constraints

$1 \leq N \leq 250000$

Output Format

Output N lines.
On the $i^{\text {th }}$ line output the sum of distances between every pair of nodes after adding the first i numbers from the permutation to the binary search tree T

Sample Input \#00

```
8
4 7 3 1 8 8 2 6 5
```


Sample Output \#00

Explanation \#00

After adding the first element, the distance is 0 as there is only 1 element

4

After adding the second element, the distance between 2 nodes is 1 .
4
7

After adding the third element, the distance between every pair of elements is $2+1+1=4$

After adding the fifth element, the distance between every pair of elements is $4+3+2+1+3+2+$ $1+2+1+1=20$

After adding the sixth element, the distance between every pair of elements is $5+4+3+2+1+4$ $+3+2+1+3+2+1+2+1+1=35$

After adding the seventh element, the distance between every pair of elements is $5+5+4+3+2+1+4+4+3+2+1+3+3+2+1+2+2+1+1+1+2=52$

After adding the final element, the distance between every pair of elements is $6+5+5+4+3+2+1+5+4+4+3+2+1+4+3+3+2+1+3+2+2+1+2+1+1+2+1+3=76$

