Build a String

Greg wants to build a string, S of length N. Starting with an empty string, he can perform 2 operations:

1. Add a character to the end of S for A dollars.
2. Copy any substring of S, and then add it to the end of S for B dollars.

Calculate minimum amount of money Greg needs to build S.

Input Format

The first line contains number of testcases T.
The $2 \times T$ subsequent lines each describe a test case over 2 lines:
The first contains 3 space-separated integers, N, A, and B, respectively.
The second contains S (the string Greg wishes to build).

Constraints

- $1 \leq T \leq 3$
- $1 \leq N \leq 3 \times 10^{4}$
- $1 \leq A, B \leq 10000$
- S is composed of lowercase letters only.

Output Format

On a single line for each test case, print the minimum cost (as an integer) to build S.

Sample Input

```
2
945
aabaacaba
9 8 9
bacbacacb
```


Sample Output

```
26
42
```


Explanation

Test Case 0:
$S_{\text {initial }}=" " ; S_{\text {final }}=$ "aabaacaba"
Append " a "; $S=$ " a "; cost is 4
Append "a"; $S=$ " $a a^{\prime}$ "; cost is 4
Append "b"; $S=$ " $a a b$ "; cost is 4

Copy and append " $a a$ "; $S=$ "aabaa"; cost is 5
Append "c"; $S=$ "aabaac"; cost is 4
Copy and append "aba"; $S=$ "aabaacaba"; cost is 5
Summing each cost, we get $4+4+4+5+4+5=26$, so our output for Test Case 1 is 26 .
Test Case 1:
$S_{\text {initial }}=" " ; S_{\text {final }}=$ "bacbacacb"
Append " b "; $S=" b$ "; cost is $\$ 8$
Append " a "; $S=$ " $b a$ "; cost is $\$ 8$
Append " c "; $S=$ "bac"; cost is $\$ 8$
Copy and append "bac"; $S=$ "bacbac"; cost is $\$ 9$
Copy and append "acb"; $S=$ "bacbacacb"; cost is $\$ 9$
Summing each cost, we get $8+8+8+9+9=42$, so our output for Test Case 2 is 42 .

