Castle on the Grid

You are given a square grid with some cells open (.) and some blocked (X). Your playing piece can move along any row or column until it reaches the edge of the grid or a blocked cell. Given a grid, a start and a goal, determine the minmum number of moves to get to the goal.

Example.

$$
\begin{aligned}
& \operatorname{grid}=\left[' \ldots,,^{\prime} . \mathrm{X} ., ', \ldots '\right] \\
& \operatorname{start} X=0 \\
& \operatorname{start} Y=0 \\
& \operatorname{goal} X=1 \\
& \operatorname{goalY}=2
\end{aligned}
$$

The grid is shown below:
.x.

The starting position $(\operatorname{start} X, \operatorname{start} Y)=(0,0)$ so start in the top left corner. The goal is (goalX, goalY) $=(1,2)$. The path is $(0,0) \rightarrow(0,2) \rightarrow(1,2)$. It takes 2 moves to reach the goal.

Function Description

Complete the minimumMoves function in the editor.
minimumMoves has the following parameter(s):

- string grid[n]: an array of strings that represent the rows of the grid
- int startX: starting X coordinate
- int startY: starting Y coordinate
- int goal X : ending X coordinate
- int goalY: ending Y coordinate

Returns

- int: the minimum moves to reach the goal

Input Format

The first line contains an integer n, the size of the array grid.
Each of the next n lines contains a string of length n.
The last line contains four space-separated integers, startX, startY, goalX, goalY

Constraints

- $1 \leq n \leq 100$
- $0 \leq$ start X, start Y, goal X, goal $Y<n$

Sample Input

```
STDIN FUNCTION
3 grid[] size n = 3
.X. grid = ['.X.','.X.', '...']
.X.
0 0 0 2 startX = 0, startY = 0, goalX = 0, goalY = 2
```


Sample Output

3

Explanation

Here is a path that one could follow in order to reach the destination in 3 steps:
$(0,0) \rightarrow(2,0) \rightarrow(2,2) \rightarrow(0,2)$.

