You have two strings, a and b. Find a string, s, such that:

- s can be expressed as $s=s_{a}+s_{b}$ where s_{a} is a non-empty substring of a and s_{b} is a non-empty substring of b.
- s is a palindromic string.
- The length of s is as long as possible.

For each of the q pairs of strings (a_{i} and b_{i}) received as input, find and print string s_{i} on a new line. If you're able to form more than one valid string s_{i}, print whichever one comes first alphabetically. If there is no valid answer, print -1 instead.

Input Format

The first line contains a single integer, q, denoting the number of queries. The subsequent lines describe each query over two lines:

1. The first line contains a single string denoting a.
2. The second line contains a single string denoting b.

Constraints

- $1 \leq q \leq 10$
- $1 \leq|a|,|b| \leq 10^{5}$
- a and b contain only lowercase English letters.
- Sum of |a| over all queries does not exceed 2×10^{5}
- Sum of $|\mathrm{b}|$ over all queries does not exceed 2×10^{5}

Output Format

For each pair of strings (a_{i} and b_{i}), find some s_{i} satisfying the conditions above and print it on a new line. If there is no such string, print -1 instead.

Sample Input

```
fds
```


Sample Output

 dfhfd
Explanation

We perform the following three queries:

1. Concatenate $s_{a}=$ "a" with $s_{b}=$ "ba" to create $s=$ "aba".
2. We're given $a=$ "abc" and $s_{a}=$ "def"; because both strings are composed of unique characters, we cannot use them to form a palindromic string. Thus, we print -1 .
3. Concatenate $s_{a}=$ "dfh" with $s_{b}=$ "fd" to create $s=$ "dfhfd". Note that we chose these particular substrings because the length of string s must be maximal.
