HackerRankB

Changing Bits
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed:
e set a idx x: Setafidz] to &, where 0 < idz < n and afidz] is idz®® least significant bit of a.
e set b idx =: Set blidz] to z, where 0 < idx < n and b[idz] is idz™ least significant bit of b.
* get c idx: Print c[idz], where c[idz] = aidz] + b[idz] and 0 < idx < n + 1.

Given a, b, and a list of commands, create a string made of the results of each get_c call, the only
command that produces output. For example, a = 000 and b = 111 so the length of the numbers is
n = 3. Print an answer string that contains the results of all commands on one line. A series of
commands and their results follow:

Starting

ans = '' (empty string)
a b

000 111

set a 11

010 111

set b 0 1

010 111

get c 3

a +b 1001

ans = '1"'

010 111

get c 4

a + b = 01001

ans = '10"

Note: When the command is get ¢ 4, ¢ had to be padded to the left with a 0 to be long enough to
return a value.

Function Description

Complete the changeBits function in the editor below. For each get ¢ command, it should print either a
0 or a 1 without a newline until all commands have been processed. At that point, add a newline.

changeBits has the following parameters:
- a, b: two integers represented as binary strings
- queries[queries[0]-queries[n-1]]: an array of query strings in the format described

Input Format

The first line of input contains two space-separated integers, n and ¢, the length of the binary
representations of @ and b, and the number of commands, respectively.

1/2



The second and third lines each contain a string representation of a and b.
The following q lines each contain a command string queries|i] as described above.
Constraints

1 < n < 100000
1 < g < 500000

Output Format
For each query of the type get_c, output a single digit 0 or 1. Output must be placed on a single line.

Sample Input 0

55

00000
11111
set_a
get _c
get ¢
set b
get_c

g N = oo

Sample Output 0

100

Explanation O

e set a 01 sets 00000 to 00001

C=A+B=00001+ 11111 = 100000, so get_c[5] =1

from the above computation get_c[1] = 0

set b2 0sets 11111 to 11011

C=A+B=00001+ 11011 = 011100, so get_c[5] =0

The output is hence concatenation of 1, 0 and 0 = 100

2/2



