
1/2

Changing Bits

Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed:

set_a idx x : Set to , where and is least significant bit of .

set_b idx x : Set to , where and is least significant bit of .

get_c idx : Print , where and .

Given , and a list of commands, create a string made of the results of each call, the only

command that produces output. For example, and so the length of the numbers is

. Print an answer string that contains the results of all commands on one line. A series of

commands and their results follow:

Starting

ans = '' (empty string)

a b

000 111

set_a 1 1

010 111

set_b 0 1

010 111

get_c 3

a + b = 1001

ans = '1'

010 111

get_c 4

a + b = 01001

ans = '10'

Note: When the command is get_c 4 , had to be padded to the left with a to be long enough to

return a value.

Function Description

Complete the changeBits function in the editor below. For each get_c command, it should print either a

0 or a 1 without a newline until all commands have been processed. At that point, add a newline.

changeBits has the following parameters:

- a, b: two integers represented as binary strings

- queries[queries[0]-queries[n-1]]: an array of query strings in the format described

Input Format

The first line of input contains two space-separated integers, and , the length of the binary

representations of and , and the number of commands, respectively.

2/2

The second and third lines each contain a string representation of and .

The following lines each contain a command string as described above.

Constraints

Output Format

For each query of the type , output a single digit 0 or 1. Output must be placed on a single line.

Sample Input 0

5 5

00000

11111

set_a 0 1

get_c 5

get_c 1

set_b 2 0

get_c 5

Sample Output 0

100

Explanation 0

set_a 0 1 sets 00000 to 00001

C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1

from the above computation get_c[1] = 0

set_b 2 0 sets 11111 to 11011

C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0

The output is hence concatenation of 1, 0 and 0 = 100

