Choosing White Balls

There are n balls in a row, and each ball is either black (B) or white (w). Perform k removal operations with the goal of maximizing the number of white balls picked. For each operation i (where $1 \leq i \leq k$):

1. Choose an integer, x_{i}, uniformly and independently from 1 to $n-i+1$ (inclusive).
2. Remove the $x_{i}{ }^{\text {th }}$ ball from either the left end or right end of the row, which decrements the number of available balls in the row by 1 . You can choose to remove the ball from whichever end in each step maximizing the expected total number of white balls picked at the end.

Given a string describing the initial row of balls as a sequence of $n \mathrm{w}$'s and B 's, find and print the expected number of white balls providing that you make all choices optimally. A correct answer has an absolute error of at most 10^{-6}.

Input Format

The first line contains two space-separated integers describing the respective values of n (the number of balls) and k (the number of operations).
The second line describes the initial sequence balls as a single string of n characters; each character is either B or w and describes a black or white ball, respectively.

Constraints

- $1 \leq k \leq n<30$

Output Format

Print a single floating-point number denoting the expected number of white balls picked. Your answer is considered to be correct if it has an absolute error of at most 10^{-6}.

Sample Input 0

```
31
BWW
```

Sample Output 0

1.0000000000

Explanation 0

Independent of your choice of x, one white ball will always be picked so the expected number of white balls chosen after $k=1$ operation is 1 . Thus, we print 1 as our answer.

Sample Input 1

```
4
```

WBWB

Sample Output 1

1.5000000000

Explanation 1

We perform the following $k=2$ operations:

1.

Independent of your choice of x, a white ball will always be chosen during the first operation (meaning the expected number of white balls in the first operation is 1).

2.

For the second operation, there are 2 possible row orderings (depending on which ball was picked during the first operation). In the first possible row ordering, the probability of picking a white ball is $\frac{1}{3}$. In the second possible row ordering, the probability of picking a white ball is $\frac{2}{3}$. This means the expected number of white balls chosen in the second operation is $\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{2} \cdot \frac{2}{3}=\frac{1}{2}$.

After performing all $k=2$ operations, we print the total expected number of white balls chosen, which is $1+\frac{1}{2}=1.5$.

