Jack and Daniel are friends. They want to encrypt their conversations so that they can save themselves from interception by a detective agency so they invent a new cipher.

Every message is encoded to its binary representation. Then it is written down k times, shifted by $0,1, \cdots, k-1$ bits. Each of the columns is XORed together to get the final encoded string.

If $b=1001011$ and $k=4$ it looks like so:

```
1001011 shift 0
0 1 0 0 1 0 1 1 ~ s h i f t ~ 1 ~
0 0 1 0 0 1 0 1 1 ~ s h i f t ~ 2 ~
0 0 0 1 0 0 1 0 1 1 ~ s h i f t ~ 3 ~
1 1 1 0 1 0 1 0 0 1 ~ < - ~ X O R e d / e n c o d e d ~ s t r i n g ~ s ~
```

Now we have to decode the message. We know that $k=4$. The first digit in $s=1$ so our output string is going to start with 1 . The next two digits are also 1 , so they must have been XORed with 0 . We know the first digit of our $4^{\text {th }}$ shifted string is a 1 as well. Since the $4^{\text {th }}$ digit of s is 0 , we XOR that with our 1 and now know there is a 1 in the $4^{\text {th }}$ position of the original string. Continue with that logic until the end.

Then the encoded message s and the key k are sent to Daniel.
Jack is using this encoding algorithm and asks Daniel to implement a decoding algorithm. Can you help Daniel implement this?

Function Description

Complete the cipher function in the editor below. It should return the decoded string. cipher has the following parameter(s):

- k : an integer that represents the number of times the string is shifted
- s : an encoded string of binary digits

Input Format

The first line contains two integers n and k, the length of the original decoded string and the number of shifts.
The second line contains the encoded string s consisting of $n+k-1$ ones and zeros.

Constraints

$1 \leq n \leq 10^{6}$
$1 \leq k \leq 10^{6}$
$|s|=n+k-1$
It is guaranteed that s is valid.

Output Format

Return the decoded message of length n, consisting of ones and zeros.
Sample Input 0

```
7
1 1 1 0 1 0 0 1 1 0
```


Sample Output 0

```
1 0 0 1 0 1 0
```


Explanation 0

```
1001010
    1001010
        1001010
        1001010
    ----------
    1 1 1 0 1 0 0 1 1 0
```


Sample Input 1

62
1110001

Sample Output 1

101111

Explanation 1

```
101111
```

101111

1110001

Sample Input 2

```
10 3
1110011011
```


Sample Output 2

10000101

Explanation 2

10000101010000101

0010000101
1110011011

