Circular Palindromes

A palindrome is a string that reads the same from left to right as it does from right to left.
Given a string, S, of N lowercase English letters, we define a k-length rotation as cutting the first k characters from the beginning of S and appending them to the end of S. For each S, there are N possible k-length rotations (where $0 \leq k<N$). See the Explanation section for examples.

Given N and S, find all $N k$-length rotations of S; for each rotated string, S_{k}, print the maximum possible length of any palindromic substring of S_{k} on a new line.

Input Format

The first line contains an integer, N (the length of S).
The second line contains a single string, S.

Constraints

- $1 \leq N \leq 5 \times 10^{5}$
- $0 \leq k<N$
- S is comprised of lowercase English letters.

Output Format

There should be N lines of output, where each line k contains an integer denoting the maximum length of any palindromic substring of rotation S_{k}.

Sample Input 0

13
aaaaab.b.bbaaaa

Sample Output 0

[^0]
Sample Input 1

Sample Output 1

```
3
3
3
3
3
3
3
```


Sample Input 2

```
1 2
eededdeedede
```


Sample Output 2

Explanation

Consider Sample Case 1, where $S=$ "cacbbba".
The possible rotations, S_{k}, for string S are:
$S_{0}=" c a c b b b a "$.
$S_{1}=" a c b b b a c "$
$S_{2}=" c b b b a c a "$
$S_{3}=" b b b a c a c "$
$S_{4}=" b b a c a c b "$
$S_{5}="$ bacacbb"
$S_{6}="$ acacbbb"
The longest palindromic substrings for each S_{k} are:
S_{0} : "cac" and "bbb", so we print their length (3) on a new line.
S_{1} : "bbb", so we print its length (3) on a new line.
S_{2} : "bbb" and "aca", so we print their length (3) on a new line.
S_{3} : "bbb", "aca", and "cac", so we print their length (3) on a new line.
S_{4} : "aca" and "cac", so we print their length (3) on a new line.
$S_{5}: "$ aca" and "cac", so we print their length (3) on a new line.
S_{6} : "aca", "cac", and "bbb", so we print their length (3) on a new line.

[^0]: 12
 12
 10
 8
 8
 9
 11
 13
 11
 9
 8
 8
 10

