An arcade game player wants to climb to the top of the leaderboard and track their ranking. The game uses Dense Ranking, so its leaderboard works like this:

- The player with the highest score is ranked number 1 on the leaderboard.
- Players who have equal scores receive the same ranking number, and the next player(s) receive the immediately following ranking number.

Example

ranked $=[100,90,90,80]$
player $=[70,80,105]$
The ranked players will have ranks $1,2,2$, and 3 , respectively. If the player's scores are 70,80 and 105 , their rankings after each game are $4^{t h}, 3^{r d}$ and $1^{\text {st }}$. Return $[4,3,1]$.

Function Description

Complete the climbingLeaderboard function in the editor below.
climbingLeaderboard has the following parameter(s):

- int ranked[n]: the leaderboard scores
- int player[m]: the player's scores

Returns

- int[m]: the player's rank after each new score

Input Format

The first line contains an integer n, the number of players on the leaderboard.
The next line contains n space-separated integers ranked $[i]$, the leaderboard scores in decreasing order. The next line contains an integer, m, the number games the player plays.
The last line contains m space-separated integers player $[j]$, the game scores.

Constraints

- $1 \leq n \leq 2 \times 10^{5}$
- $1 \leq m \leq 2 \times 10^{5}$
- $0 \leq \operatorname{ranked}[i] \leq 10^{9}$ for $0 \leq i<n$
- $0 \leq \operatorname{player}[j] \leq 10^{9}$ for $0 \leq j<m$
- The existing leaderboard, ranked, is in descending order.
- The player's scores, player, are in ascending order.

Subtask

For 60% of the maximum score:

- $1 \leq n \leq 200$
- $1 \leq m \leq 200$

Sample Input 0

```
7
100 100 50 40 40 20 10
4
5 25 50 120
```


Sample Output 0

\square

Explanation 0

Alice starts playing with 7 players already on the leaderboard, which looks like this:

Rank	Name	Score
1	Emma	100
1	David	100
2	Caroline	50
3	Ritika	40
3	Tom	40
4	Heraldo	20
5	Riley	10

After Alice finishes game 0 , her score is 5 and her ranking is 6 :

Rank	Name	Score
1	Emma	100
1	David	100
2	Caroline	50
3	Ritika	40
3	Tom	40
4	Heraldo	20
5	Riley	10
$\mathbf{6}$	Alice	$\mathbf{5}$

After Alice finishes game 1, her score is 25 and her ranking is 4 :

Rank	Name	Score
1	Emma	100
1	David	100
2	Caroline	50
3	Ritika	40
3	Tom	40
4	Alice	25
5	Heraldo	20
6	Riley	10

After Alice finishes game 2, her score is 50 and her ranking is tied with Caroline at 2:

Rank	Name	Score
1	Emma	100
1	David	100
2	Caroline	50
2	Alice	50
3	Ritika	40
3	Tom	40
4	Heraldo	20
5	Riley	10

After Alice finishes game 3, her score is 120 and her ranking is 1 :

Rank	Name	Score
$\mathbf{1}$	Alice	$\mathbf{1 2 0}$
2	Emma	100
2	David	100
3	Caroline	50
4	Ritika	40
4	Tom	40
5	Heraldo	20
6	Riley	10

Sample Input 1

```
6
100 90 90 80 75 60
5
    50 65 77 90 102
```


Sample Output 1

