The Coin Change Problem

Given an amount and the denominations of coins available, determine how many ways change can be made for amount. There is a limitless supply of each coin type.

Example

$n=3$
$c=[8,3,1,2]$
There are 3 ways to make change for $n=3:\{1,1,1\},\{1,2\}$, and $\{3\}$.

Function Description

Complete the getWays function in the editor below.
getWays has the following parameter(s):

- int n : the amount to make change for
- int $c[m]$: the available coin denominations

Returns

- int: the number of ways to make change

Input Format

The first line contains two space-separated integers n and m, where:
n is the amount to change
m is the number of coin types
The second line contains m space-separated integers that describe the values of each coin type.

Constraints

- $1 \leq c[i] \leq 50$
- $1 \leq n \leq 250$
- $1 \leq m \leq 50$
- Each $c[i]$ is guaranteed to be distinct.

Hints

Solve overlapping subproblems using Dynamic Programming (DP):
You can solve this problem recursively but will not pass all the test cases without optimizing to eliminate the overlapping subproblems. Think of a way to store and reference previously computed solutions to avoid solving the same subproblem multiple times. * Consider the degenerate cases:

- How many ways can you make change for 0 cents? - How many ways can you make change for >0 terms of the base case $(n=0)$. - The answer may be larger than a 32 -bit integer.
Sample Input 0

```
4 3
123
```


Sample Output 0

```
    4
```


Explanation 0

There are four ways to make change for $n=4$ using coins with values given by $C=[1,2,3]$:

1. $\{1,1,1,1\}$
2. $\{1,1,2\}$
3. $\{2,2\}$
4. $\{1,3\}$

Sample Input 1

```
104
2 5 3 6
```


Sample Output 1

5

Explanation 1

There are five ways to make change for $n=10$ units using coins with values given by $C=[2,5,3,6]$:

1. $\{2,2,2,2,2\}$
2. $\{2,2,3,3\}$
3. $\{2,2,6\}$
4. $\{2,3,5\}$
5. $\{5,5\}$
