## Common Child

A string is said to be a child of a another string if it can be formed by deleting 0 or more characters from the other string. Letters cannot be rearranged. Given two strings of equal length, what's the longest string that can be constructed such that it is a child of both?

## Example

$s 1={ }^{\prime} \mathrm{ABCD}{ }^{\prime}$
$s 2={ }^{\prime} \mathrm{ABDC}{ }^{\prime}$

These strings have two children with maximum length 3, ABC and ABD. They can be formed by eliminating either the $D$ or $C$ from both strings. Return 3.

## Function Description

Complete the commonChild function in the editor below.
commonChild has the following parameter(s):

- string s1: a string
- string s2: another string


## Returns

- int: the length of the longest string which is a common child of the input strings


## Input Format

There are two lines, each with a string, $s 1$ and $s 2$.

## Constraints

- $1 \leq|s 1|,|s 2| \leq 5000$ where $|s|$ means "the length of $s$ "
- All characters are upper case in the range ascii[A-Z].


## Sample Input

## HARRY

SALLY

## Sample Output

2

## Explanation

The longest string that can be formed by deleting zero or more characters from $H A R R Y$ and $S A L L Y$ is $A Y$, whose length is 2 .

## Sample Input 1

```
AA
```

BB

## Sample Output 1

0

## Explanation 1

$A A$ and $B B$ have no characters in common and hence the output is 0 .

## Sample Input 2

## SHINCHAN

NOHARAAA

## Sample Output 2

3

## Explanation 2

The longest string that can be formed between $S H I N C H A N$ and $N O H A R A A A$ while maintaining the order is $N H A$.

## Sample Input 3

## ABCDEF

FBDAMN

## Sample Output 3

## 2

## Explanation 3

$B D$ is the longest child of the given strings.

